全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用一类特殊矩阵计算矩阵的N次方幂
Calculating the Nth Power of a Matrix Using a Special Matrix

DOI: 10.12677/pm.2025.151014, PP. 111-119

Keywords: 矩阵,高次幂,二项式定理,秩
Matrix
, High Power, Binomial Theorem, Rank

Full-Text   Cite this paper   Add to My Lib

Abstract:

矩阵高次幂的计算在工程实践、控制理论及经济管理等领域有着广泛的应用,同时计算矩阵的N次方幂也是高等代数及线性代数学习中常见的题型。本文先简要地介绍了常见的矩阵高次幂的计算方法,之后从秩为1的特殊矩阵的性质出发,利用其性质,结合二项式定理,给出了求一类由秩1矩阵和数量矩阵组成的矩阵的高次幂的计算公式,并给出了如何判断这类矩阵的方法,同时建立秩为1的矩阵与幂等矩阵的关系,利用幂等矩阵的性质,给出了相应矩阵的高次幂求法。
The calculation of the higher power matrix has a wide range of applications in engineering practice, control theory, economic management and other fields. At the same time, the calculation of the Nth power of the matrix is also a common problem in the study of higher algebra and linear algebra. This paper first introduces common methods for calculating the higher power of the matrix. Then, starting from the properties of the special matrix with rank 1, using its properties, combined with the binomial theorem, the formula for finding a matrix consisting of rank 1 matrix and quantitative matrix is given, and the method of how to judge this kind of matrix is given. At the same time, the relationship between the rank 1 matrix and the idempotent matrix is established, and the properties of the idempotent matrix are used. The higher power method of the corresponding matrix is given.

References

[1]  李小敏, 任水利, 章培军, 惠小健. 矩阵高次幂的计算方法研究[J]. 数学之友, 2023, 37(1): 57-60.
[2]  张海涛. n阶方阵高次幂的求解方法[J]. 山西大同大学学报(自然科学版), 2020, 36(1): 24-26.
[3]  陈建华, 卫闻逸, 苏韵. 矩阵分解思想解题意义探究[J]. 理科爱好者(教育教学), 2021(6): 1-2.
[4]  王丹. 方阵高次幂计算的几种典型方法[J]. 新课程学习(上), 2014(6): 9-10.
[5]  史秀英. 方阵高次幂的若干求法[J]. 赤峰学院学报(自然科学版), 2011, 27(5): 6-8.
[6]  余跃玉. n阶方阵高次幂的计算方法[J]. 四川文理学院学报, 2011, 21(2): 22-24.
[7]  嵇珍妮. 求方阵A的高次幂[J]. 统计与管理, 2015(8): 16-17.
[8]  任芳国, 和嘉琪. 幂等矩阵的性质及应用[J]. 数学学习与研究, 2022(22): 143-145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133