|
基于试验设计和大数据子抽样技术的“概率论与数理统计”课程教学探索
|
Abstract:
本教学探索聚焦于“概率论与数理统计”课程,深入剖析课程教学现状及痛点问题。将试验设计方法融入教学过程,阐述其与概率论及数理统计知识的紧密联系,涵盖试验设计基本原则、常用方法及其在课程中的应用实例。同时引入大数据子抽样技术,详细说明其原理、方法步骤,并结合课程知识点通过实例展示其作用。经教学实践检验,这些举措有效提升学生学习效果、实践能力与创新思维,为课程教学改革提供有益参考。
This teaching exploration focuses on the course “Probability Theory and Mathematical Statistics”, and deeply analyzes the current situation and pain points of the course teaching. This paper integrates the experimental design method into the teaching process, explains its close connection with probability theory and mathematical statistics, and covers the basic principles of experimental design, common methods, and their application examples in the course. At the same time, the big data subsampling technology is introduced, its principles, methods, and steps are explained in detail, and its role is demonstrated through examples in combination with the course knowledge points. Through the test of teaching practice, these measures can effectively improve students’ learning effectiveness, practical ability, and innovative thinking and provide a useful reference for curriculum and teaching reform.
[1] | 耿直. 大数据时代统计学面临的机遇与挑战[J]. 统计研究, 2014, 31(1): 5-9. |
[2] | 王泽龙, 刘吉英, 余奇. 概率论与数理统计课程情境化教学模式探索与实践[J]. 高教学刊, 2024, 10(31): 121-124. |
[3] | 金今姬, 高彦伟. PBL教学模式在“概率论与数理统计”教学中的应用[J]. 长春师范大学学报, 2023, 42(10): 152-157. |
[4] | Kazak, S. and Pratt, D. (2021) Developing the Role of Modelling in the Teaching and Learning of Probability. Research in Mathematics Education, 23, 113-133. https://doi.org/10.1080/14794802.2020.1802328 |
[5] | 肖敏, 徐静, 唐叶云. 《概率论与数理统计》教学改革思考[J]. 教育进展, 2021, 11(4): 1090-1094. |
[6] | 肖进胜, 杨力衡, 丁玲, 张海剑. 现代数理统计中假设检验的教学探讨[J]. 高教学刊, 2024, 10(8): 117-120. |
[7] | 王贶, 朱靖红. “概率论与数理统计”课程思政教学研究——以全概率公式和贝叶斯公式为例[J]. 辽宁工业大学学报(社会科学版), 2024, 26(2): 133-135. |
[8] | 方开泰, 刘民千, 周永道. 试验设计与建模[M]. 第2版. 北京: 高等教育出版社, 2024. |
[9] | 方开泰, 刘民千, 覃红, 周永道. 均匀试验设计的理论和应用[M]. 北京: 科学出版社, 2019. |
[10] | Fang, K.T., Liu, M.Q., Qin, H. and Zhou, Y.D. (2018) Theory and Application of Uniform Experimental Designs. Springer and Science Press. |
[11] | Wang, H., Yang, M. and Stufken, J. (2018) Information-Based Optimal Subdata Selection for Big Data Linear Regression. Journal of the American Statistical Association, 114, 393-405. https://doi.org/10.1080/01621459.2017.1408468 |
[12] | Wang, H., Zhu, R. and Ma, P. (2018) Optimal Subsampling for Large Sample Logistic Regression. Journal of the American Statistical Association, 113, 829-844. https://doi.org/10.1080/01621459.2017.1292914 |