|
低碳视角下公铁联运最后一公里配送路径优化研究
|
Abstract:
针对公铁联运“最后一公里”配送中存在碳排放量和总成本过高等问题。从低碳视角出发,根据运输方式不同,分别构建低碳视角下公铁联运正向配送路径优化模型和正逆向结合路径优化模型,前者包含公铁运输成本及其碳排放成本、铁路物流中心发车成本等相关成本,后者在前者包含的成本上增加了逆向铁路运输成本及碳排放成本。然后,阐述了两个模型的区别。最后通过禁忌搜索算法对其进行求解。相关的案例分析结果显示;在总成本方面,正逆向结合运输模式相比单独正逆向运输模式总成本的费用节省率为41.03%;在碳排放成本方面,正逆向结合运输模式相比单独正逆向运输模式碳排放总成本的费用节省率为41.41%;在碳排放成本中公路运输碳排放成本占比最大,因此,通过提高车辆装载率,可以降低运输里程,从而达到降低公路运输成本的目的。研究为进一步优化公铁联运“最后一公里”配送服务提供参考。
Aiming at the problems of high carbon emission and total cost in the “last kilometer” distribution of rail-road intermodal transportation. From the perspective of low-carbon, according to different modes of transportation, the forward distribution path optimization model and the forward and reverse combination path optimization model of public and railway intermodal transport are respectively constructed from the perspective of low-carbon. The former includes the transport cost and carbon emission cost of public and railway logistics center, and the latter adds the reverse railway transport cost and carbon emission cost to the cost contained in the former. Finally, it is solved by tabu search algorithm. The results of relevant case studies show that; In terms of total cost, the cost saving rate of combined forward and reverse transport mode is 41.70% compared with that of single forward and reverse transport mode. In terms of carbon emission cost, the cost-saving rate of combined forward and reverse transport mode is 41.41% compared with the total carbon emission cost of single forward and reverse transport mode. In the carbon emission cost. Therefore, under the background of the country’s vigorous development of green and low-carbon, the road transport process should be optimized as much as possible. In terms of other costs, to achieve the purpose of reducing the road transportation cost. The results of this study provide a reference for further optimizing the “last kilometer” distribution service of rail-road intermodal transportation.
[1] | 张振江, 张玉召, 王小荣. 模糊需求下快捷货物低碳运输方式及路径选择[J]. 铁道科学与工程学报, 2021, 18(3): 777-785. |
[2] | 康禄. 考虑碳排放的公铁联运路径和运输方式选择优化研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2022. |
[3] | 徐剑, 李周奇, 蒋洋. 考虑储存成本的集装箱公铁联运路径优化[J]. 沈阳工业大学学报(社会科学版), 2021, 14(2): 175-179. |
[4] | 李欣雅, 任舒翼, 孙岩. 集装箱公铁联运路径优化研究综述[J]. 河南科学, 2022, 40(4): 579-588. |
[5] | 李玉民, 邱梦, 黑柏林, 等. 考虑高铁时间窗和客户满意度的生鲜品公铁联运路径选择[J]. 工业工程, 2021, 24(2): 49-56. |
[6] | Li, J., Wang, Y. and Du, K. (2022) Distribution Path Optimization by an Improved Genetic Algorithm Combined with a Divide-and-Conquer Strategy. Technologies, 10, Article 81. https://doi.org/10.3390/technologies10040081 |
[7] | Sun, Y. (2020) Green and Reliable Freight Routing Problem in the Road-Rail Intermodal Transportation Network with Uncertain Parameters: A Fuzzy Goal Programming Approach. Journal of Advanced Transportation, 2020, Article ID: 7570686. https://doi.org/10.1155/2020/7570686 |
[8] | Uddin, M. and Huynh, N. (2019) Reliable Routing of Road-Rail Intermodal Freight under Uncertainty. Networks and Spatial Economics, 19, 929-952. https://doi.org/10.1007/s11067-018-9438-6 |
[9] | Sun, Y., Li, X., Liang, X. and Zhang, C. (2019) A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability. Sustainability, 11, Article 2577. https://doi.org/10.3390/su11092577 |
[10] | 王祺, 肖青. 模糊需求下的多中心冷链配送车辆路径问题[J]. 计算机工程与应用, 2023, 59(23): 341-350. |
[11] | 秦进, 杨淑钧, 戴博. 电商RMFS系统订单分配与路径规划联合优化方法[J]. 铁道科学与工程学报, 2023, 20(1): 116-126. |
[12] | Liu, S. and Chen, H. (2019) Research on Multi-Objective Clustering Optimization of Logistics Distribution Line. IOP Conference Series: Materials Science and Engineering, 612, Article ID: 042078. https://doi.org/10.1088/1757-899x/612/4/042078 |
[13] | 黄俊生, 陈垚, 张安英, 等. 考虑互联互通的城市轨道交通网络列车开行方案优化[J]. 铁道科学与工程学报, 2023, 20(5): 1587-1597. |
[14] | 陈伟建. 考虑碳排放的公铁联运货流转移方案设计[D]: [硕士学位论文]. 北京: 北京交通大学, 2015. |
[15] | 陈煜婷, 张惠珍, 孙冉. 双层级医疗设施选址问题及禁忌搜索算法[J]. 运筹与管理, 2021, 30(9): 56-63. |
[16] | 蒋诗云, 严喜, 吴丽芳. 铁路货运运杂费核收管理优化探讨[J]. 铁道货运, 2020, 38(11): 49-53. |