|
DC-Link薄膜电容热分析与结温预测
|
Abstract:
DC-Link薄膜电容是电动汽车电驱系统中的一个重要组成部分,在反复充放电的过程中会导致电容发热,影响其使用寿命。本文基于ANSYS仿真软件对某型号DC-Link薄膜电容器进行温度场分析,结果表明,在高温环境中,电容器芯子中心处为温度最高点,而配备散热器后,最高温度点转移至远离散热器的外壳处,散热器能显著降低芯子温度。进一步分析揭示,电容瞬时温升主要由当前瞬时损耗和当前总体温升两个内在因素决定,基于此,采用LSTM神经网络对随机损耗下的电容器结温进行预测,并通过仿真数据验证了其预测精度。本文为电容器优化设计和动态工况下电容结温实时预测提供研究基础。
DC-Link film capacitor is an important part of electric vehicle electric drive system, and the repeated charging and discharging process will cause the capacitor to heat up, which affects its service life. This paper analyzes the temperature field of a certain model of DC-Link film capacitor based on ANSYS simulation software, and the results show that in a high-temperature environment, the highest temperature point is at the center of the capacitor core, and when equipped with a heat sink, the highest temperature point is shifted to the shell far away from the heat sink, and the heat sink can significantly reduce the core temperature. Further analysis reveals that the capacitor instantaneous temperature rise is mainly determined by two intrinsic factors, namely, the current instantaneous loss and the current total body temperature rise. Based on this, this paper adopts the LSTM neural network to predict the capacitor junction temperature under the stochastic loss, and verifies its prediction accuracy by simulation data. This paper provides a research basis for capacitor optimization design and real-time prediction of capacitor junction temperature under dynamic working conditions.
[1] | 朱琦. 电机驱动系统母线电容状态监测与寿命预测方法研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2022. |
[2] | 王骁, 雷宇, 陈才茂, 等. 基于高速列车多工况运行数据的牵引传动系统支撑电容的寿命评估[J]. 铁道机车车辆, 2022, 42(6): 94-99. |
[3] | Yin, J., Liu, J., Zhang, Y. and Lv, C. (2021) A Method to Improve the Accuracy and Efficiency for Metallized-Film Capacitor’s Reliability Assessment Using Joint Simulation. Microelectronics Reliability, 126, Article ID: 114245. https://doi.org/10.1016/j.microrel.2021.114245 |
[4] | 杨惠兰, 侯涛, 刘谆. 金属膜电容老化特性及寿命模型研究[J]. 现代工业经济和信息化, 2020, 10(8): 20-22. |
[5] | El-Husseini, M.H., Venet, P., Rojat, G. and Joubert, C. (2002) Thermal Simulation for Geometric Optimization of Metallized Polypropylene Film Capacitors. IEEE Transactions on Industry Applications, 38, 713-718. https://doi.org/10.1109/tia.2002.1003421 |
[6] | 邱昊, 高秀华, 邱林俊, 等. 直流支撑电容器工作温升特性研究及优化设计[J]. 电子元件与材料, 2023, 42(8): 969-974, 981. |
[7] | 黄琳皓, 袁涛, 郭新华, 等. 车载直流母线电容器电热耦合及散热特性分析[J]. 电子元件与材料, 2023, 42(8): 933-941. |
[8] | 马俊林, 徐延东, 许晨昊, 等. 电动汽车用DC-link电容器热仿真和试验研究[J]. 电力电子技术, 2018, 52(1): 47-50. |
[9] | 范丽娜. 基于ANSYS的电动汽车用直流滤波电容器热分析[J]. 电力电容器与无功补偿, 2018, 39(2): 32-37, 41. |
[10] | 陈红晓, 刘学孔, 孔米秋, 等. 基于ANSYS的金属化膜脉冲电容器放电过程热仿真与分析[J]. 电子元件与材料, 2020, 39(12): 27-34. |
[11] | 陈俊, 殷召凯, 孙新函, 等. 电动汽车电机控制器母线电容纹波电流研究[J]. 微电机, 2023, 56(3): 63-66, 82. |
[12] | Kolar, J.W. and Round, S.D. (2006) Analytical Calculation of the RMS Current Stress on the DC-Link Capacitor of Voltage-PWM Converter Systems. IEE Proceedings—Electric Power Applications, 153, 535-543. https://doi.org/10.1049/ip-epa:20050458 |