全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用户数据下电动汽车驱–制动载荷构建
Construction of Drive-Brake Load for Electric Vehicles Based on User Data

DOI: 10.12677/mos.2025.141050, PP. 538-548

Keywords: 用户大数据,电驱动系统,动力学模型,可靠性
User Big Data
, Electric Drive System, Dynamical Model, Reliability

Full-Text   Cite this paper   Add to My Lib

Abstract:

对基于用户运行数据的电动汽车驱–制动载荷工况研究,是电驱动系统可靠性设计与评价验证的前提和基础。本文通过构建车辆纵向动力学模型以获取电驱动系统工况载荷,并结合实测数据验证模型的有效性;基于七个地域累计100万公里的用户实际运行数据,分析用户在不同工况下的运行时间、行驶里程和损伤贡献;结果表明,加速段时间与里程占比最大;进一步统计不同工况片段各部件损伤,结果表明,加减速时的扭矩波动是轴类失效的主导工况,连续高速行驶较大扭矩工况导致齿轮、轴承失效,而匀速、怠速工况对应低速较小扭矩波动工况,对各部件损伤贡献量较小。研究成果为电驱动系统的可靠性正向设计与验证提供了参考和依据。
The research on the driving braking load conditions of electric vehicles based on user operation data is the prerequisite and foundation for the reliability design and evaluation verification of electric drive systems. This article constructs a longitudinal dynamic model of the vehicle to obtain the working load of the electric drive system, and verifies the effectiveness of the model with measured data; Based on accumulated 1 million kilometers of actual user operation data from seven regions, analyze the user’s operating time, mileage, and damage contribution under different working con- ditions; The results indicate that the proportion of acceleration time to mileage is the highest; Further statistics on the damage of various components in different operating conditions show that torque fluctuations during acceleration and deceleration are the dominant driving conditions for shaft failures. Continuous high-speed driving with high torque conditions leads to gear and bearing failures, while constant speed and idle conditions correspond to low-speed and small torque fluctuation conditions, with relatively small contributions to the damage of various components. The research results provide reference and basis for the reliability positive design and verification of electric drive systems.

References

[1]  Sasidharans, I. (2016) Reliability Analysis in an Electrical Drive System. Indian Journal of Science and Technology, 48, 1-4.
[2]  赵礼辉, 刘斌, 井清, 等. 轻型商用车全寿命周期目标里程与运行工况研究[J]. 汽车工程, 2018, 40(3): 342-348.
[3]  Zhang, J., Wang, Z., Liu, P., Zhang, Z., Li, X. and Qu, C. (2019) Driving Cycles Construction for Electric Vehicles Considering Road Environment: A Case Study in Beijing. Applied Energy, 253, Article ID: 113514.
https://doi.org/10.1016/j.apenergy.2019.113514
[4]  赵礼辉, 李佳欣, 井清, 等. 关联用户的汽车试验场耐久性评价路况循环确定方法研究[J]. 汽车工程, 2020(1): 127-133.
[5]  赵礼辉, 王震, 冯金芝, 等. 基于用户大数据的电动汽车驱动系统可靠性试验循环工况构建方法[J]. 机械工程学报, 2021, 57(14): 129-140.
[6]  周卫琪, 齐翔. 基于多传感器信息融合的汽车行驶状态估计[J]. 汽车工程, 2019, 41(1): 7-13+20.
[7]  陈勇, 郑大伟, 雷勇敢, 等. 纯电动汽车模糊控制经济性换挡策略研究[J]. 机械设计与制造, 2024(5): 88-91.
[8]  林程, 梁晟, 宫新乐, 等. 面向极限工况的分布式驱动电动汽车动力学集成控制方法[J]. 汽车工程, 2022, 44(9): 1372-1385.
[9]  杨年炯, 宋英杰, 肖旺. 某型纯电动汽车动力系统匹配及优化研究[J]. 中国工程机械学报, 2023, 21(6): 557-561+567.
[10]  王金. 车用电机控制器寿命评估与寿命提升研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2021.
[11]  王震. 运行数据下电驱动系统剩余寿命动态预测方法研究[D]: [博士学位论文]. 上海: 上海理工大学, 2024.
[12]  李彬, 刘洪利, 宋瑞, 等. AMT半挂牵引车行驶工况构建与换挡场景分析[J]. 中国公路学报, 2024, 37(9): 312-326.
[13]  李晓甫, 赵克刚, 黄向东, 等. 汽车行驶阻力模型参数的确定[J]. 汽车工程, 2011, 33(8): 645-648.
[14]  赵礼辉, 陈沛, 王震, 等. 运行工况下车辆动态载荷预测方法研究[J]. 机械工程学报, 2024: 1-13.
[15]  Lee, Y.L., Pan, J., Hathaway, R., et al. (2005) Fatigue Testing and Analysis. Butterworth Heinemann.
[16]  李震, 商慧玲, 张旭, 等. 高速动车轴箱轴承疲劳寿命计算方法[J]. 铁道学报, 2020, 42(3): 55-62.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133