全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多方式保偏光子晶体光纤建模仿真及优化
Multi-Mode Bias-Preserving Photonic Crystal Fiber Modelling Simulation and Optimization

DOI: 10.12677/mos.2025.141049, PP. 525-537

Keywords: 微结构缺陷,应力双折射,偏振保持,光子晶体光纤
Microstructural Defects
, Stress Birefringence, Polarization Retention, Photonic Crystal Fibers

Full-Text   Cite this paper   Add to My Lib

Abstract:

光子晶体光纤具有大模场面积、高功率载能、高保偏性能等诸多优势。目前性能优良的光子晶体光纤依赖进口且价格昂贵,急需实现国产化。本文按照稳定的正六边形结构排布光子晶体光纤的空气孔,然后分别以对边中线和对角线为对称轴制造空气孔缺陷,得到6种不同结构的几何型保偏光子晶体光纤。经过比较以上6种光纤的双折射大小,得出空气孔缺陷以对角线为轴对称排布的光子晶体光纤具有更佳的保偏性能。之后在光子晶体光纤内部添加一对以对角线为轴对称分布的圆形应力区,使得光纤的双折射达到了104量级。对比最内层无空气孔缺陷的光纤而言,有空气孔缺陷后双折射得到了5 × 106的提升。同时证明了增大应力区面积和减小应力区偏离纤芯距离均对双折射有提升效果。最后分析光纤在不同纤芯折射率和空气孔尺寸下的双折射、限制性损耗和基模有效面积变化。结果表明,增大纤芯折射率和空气孔尺寸会略微减小光纤的双折射,但是基模模场面积得到了极大的优化。本篇文章对几何和应力双折射进行了详细分析和探究,为光子晶体光纤的设计和制备提供了新思路。
Photonic crystal fiber has many advantages such as large mode field area, high power carrying capacity, high bias preserving performance and so on. At present, photonic crystal fibers with excellent performance are imported and expensive, and there is an urgent need for localization. In this paper, the air holes of the photonic crystal fiber are arranged according to the stable hexagonal structure, and then the air hole defects are fabricated by taking the middle line of the opposite side and the diagonal line as the symmetry axis respectively, so as to obtain six kinds of geometrically bias-preserving photonic crystal fibers with different structures. After comparing the birefringence sizes of the above six optical fibers, it is concluded that the photonic crystal fiber with the air hole defects arranged symmetrically on the diagonal axis has a better bias preserving performance. Afterwards, a pair of circular stress zones with diagonally symmetric distribution were added inside the photonic crystal fiber, which made the birefringence of the fiber reach the magnitude of 104. In comparison with the fiber without air hole defects in the innermost layer, the birefringence was enhanced by 5 × 106 with air hole defects. It is also demonstrated that both increasing the area of the stress region and decreasing the distance of the stress region away from the core have an enhancing effect on the birefringence. Finally, the changes of birefringence, limiting loss and effective area of fundamental mode are analyzed for fibers with different core refractive indices and air hole sizes. The results show that increasing the core refractive index and air hole size slightly reduces the birefringence of the fiber, but the fundamental mode field area is greatly optimized. In this article, geometrical and stress birefringence is analyzed and investigated in detail, providing new ideas for the design and preparation of photonic crystal fibers.

References

[1]  Nemova, G. (2024) Brief Review of Recent Developments in Fiber Lasers. Applied Sciences, 14, Article 2323.
https://doi.org/10.3390/app14062323

[2]  Sha, W., Chanteloup, J. and Mourou, G. (2022) Ultrafast Fiber Technologies for Compact Laser Wake Field in Medical Application. Photonics, 9, Article 423.
https://doi.org/10.3390/photonics9060423

[3]  Wang J. and Shi, Y.-M. (2006) Study of Chirps Induced by the Higher-Order Nonlinear Effects in the Photonic Crystal Fiber. Acta Physica Sinica, 55, 2820-2824.
https://doi.org/10.7498/aps.55.2820

[4]  Markos, C., Travers, J.C., Abdolvand, A., Eggleton, B.J. and Bang, O. (2017) Hybrid Photonic-Crystal Fiber. Reviews of Modern Physics, 89, Article 045003.
https://doi.org/10.1103/revmodphys.89.045003

[5]  Bhowmik, T. and Maity, A. (2017) Design and Analysis of Broadband Single-Mode Photonic Crystal Fiber for Transmission Windows of the Telecom Wavelengths. Optik, 139, 366-372.
https://doi.org/10.1016/j.ijleo.2017.04.034

[6]  于春雷, 王孟, 冯素雅, 等. 掺镱大模场光子晶体光纤的研究进展[J]. 激光与光电子学进展, 2019, 56(17): 20-33.
[7]  Poli, F., Coscelli, E., Alkeskjold, T.T., Passaro, D., Cucinotta, A., Leick, L., et al. (2011) Cut-off Analysis of 19-Cell Yb-Doped Double-Cladding Rod-Type Photonic Crystal Fibers. Optics Express, 19, 9896-9907.
https://doi.org/10.1364/oe.19.009896

[8]  Jabin, M.A., Luo, Y., Peng, G., Rana, M.J., Ahmed, K., Nguyen, T.K., et al. (2020) Design and Fabrication of Amoeba Faced Photonic Crystal Fiber for Biosensing Application. Sensors and Actuators A: Physical, 313, Article 112204.
https://doi.org/10.1016/j.sna.2020.112204

[9]  Li, T., Yan, F., Du, X., Wang, X., Wang, P., Suo, Y., et al. (2023) Wavelength-Switchable Dual-Wavelength Thulium-Doped Fiber Laser Utilizing Photonic Crystal Fiber. Optics Communications, 528, Article 129033.
https://doi.org/10.1016/j.optcom.2022.129033

[10]  Feehan, J.S., Price, J.H.V., Butcher, T.J., Brocklesby, W.S., Frey, J.G. and Richardson, D.J. (2017) Efficient High-Harmonic Generation from a Stable and Compact Ultrafast Yb-Fiber Laser Producing 100 μJ, 350 fs Pulses Based on Bendable Photonic Crystal Fiber. Applied Physics B, 123, Article No. 43.
https://doi.org/10.1007/s00340-016-6620-8

[11]  Liang, S., Yang, Y., Kang, S., Zhang, Y., Sheng, X., Lou, S., et al. (2019) Influences of Asymmetrical Geometric Structures on the Birefringence of Index-Guiding Photonic Crystal Fiber. Optik, 180, 973-983.
https://doi.org/10.1016/j.ijleo.2018.11.136

[12]  Su, X., Gao, J. and Ji, M. (2023) Stress Birefringence in the Three-Core Optical Fiber and Its Effects on the Transmission Property. Optical Fiber Technology, 81, Article 103517.
https://doi.org/10.1016/j.yofte.2023.103517

[13]  Eronyan, M.A., Devetyarov, D.R., Reutskiy, A.A., Untilov, A.A., Aksarin, S.M., Meshkovskiy, I.K., et al. (2022) Polarization-Maintaining and Radiation Resistant Optical Fiber with Germanosilicate Elliptical Core. Optical Fiber Technology, 68, Article 102789.
https://doi.org/10.1016/j.yofte.2021.102789

[14]  Li, F., He, M., Zhang, X., Chang, M. and Wu, Z. (2020) Ultra-High Birefringence and Nonlinearity Photonic Crystal Fiber with a Nanoscale Core Shaped by an Air Slot and Silicon Strips. Optical Fiber Technology, 54, Article 102082.
https://doi.org/10.1016/j.yofte.2019.102082

[15]  Kumar, A., Saini, T.S., Naik, K.D. and Sinha, R.K. (2016) Large-Mode-Area Single-Polarization Single-Mode Photonic Crystal Fiber: Design and Analysis. Applied Optics, 55, 4995-5000.
https://doi.org/10.1364/ao.55.004995

[16]  Mondal, K. (2020) A Comparative Study of Birefringence in Photonic Crystal Fiber Employing Various Lattice Geometries with All-Circular Air Holes. Optik, 215, Article 164699.
https://doi.org/10.1016/j.ijleo.2020.164699

[17]  Li, M., Li, X. and Li, H. (2021) Design of Ultrahigh Birefringent Stress-Induced Polarization-Maintaining Fiber with Hole-Assistance. Optical Fiber Technology, 67, Article 102707.
https://doi.org/10.1016/j.yofte.2021.102707

[18]  Coscelli, E., Poli, F., Alkeskjold, T.T., Salin, F., Leick, L., Broeng, J., et al. (2012) Single-Mode Design Guidelines for 19-Cell Double-Cladding Photonic Crystal Fibers. Journal of Lightwave Technology, 30, 1909-1914.
https://doi.org/10.1109/jlt.2012.2191137

[19]  Arosa, Y. and de la Fuente, R. (2020) Refractive Index Spectroscopy and Material Dispersion in Fused Silica Glass. Optics Letters, 45, 4268-4271.
https://doi.org/10.1364/ol.395510

[20]  Roy Chaudhuri, P., Ghatak, A.K., Pal, B.P. and Lu, C. (2005) Fast Convergence and Higher-Order Mode Calculation of Optical Waveguides: Perturbation Method with Finite Difference Algorithm. Optics & Laser Technology, 37, 61-67.
https://doi.org/10.1016/j.optlastec.2004.02.014

[21]  孟悦. 高功率光纤激光器的掺镱双包层光子晶体光纤的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2018.
[22]  Carrara, S.L.A., Kim, B.Y. and Shaw, H.J. (1986) Elasto-Optic Alignment of Birefringent Axes in Polarization-Holding Optical Fiber. Optics Letters, 11, 470-472.
https://doi.org/10.1364/ol.11.000470

[23]  Guan, R., Zhu, F., Gan, Z., Huang, D. and Liu, S. (2005) Stress Birefringence Analysis of Polarization Maintaining Optical Fibers. Optical Fiber Technology, 11, 240-254.
https://doi.org/10.1016/j.yofte.2004.10.002

[24]  Gasulla, I. and Capmany, J. (2006) Transfer Function of Multimode Fiber Links Using an Electric Field Propagation Model: Application to Radio over Fiber Systems. Optics Express, 14, 9051-9070.
https://doi.org/10.1364/oe.14.009051

[25]  Weerasekara, G. and Maruta, A. (2017) Characterization of Optical Rogue Wave Based on Solitons’ Eigenvalues of the Integrable Higher-Order Nonlinear Schrödinger Equation. Optics Communications, 382, 639-645.
https://doi.org/10.1016/j.optcom.2016.08.048

[26]  Ashok, N. and Shin, W. (2018) Effective D-Shape Fiber with Air Hole Assistant Design for Birefringence Analysis. Optik, 162, 27-34.
https://doi.org/10.1016/j.ijleo.2018.02.045

[27]  Su, Z., Tian, F., Zhang, Y., Wang, B., Li, L., Yang, X., et al. (2020) A Modified Large Mode-Field Area Fiber with Managing Chromatic Dispersion. Optik, 208, Article 164104.
https://doi.org/10.1016/j.ijleo.2019.164104

[28]  Vandenberge, P., Gopalakrishnan, J. and Grosek, J. (2023) Sensitivity of Confinement Losses in Optical Fibers to Modeling Approach. Optics Express, 31, 26735-26756.
https://doi.org/10.1364/oe.495467

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133