全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限新息率采样中Fast Cadzow去噪方法研究
Research on the Fast Cadzow Denoising Method in Finite Rate of Innovation Sampling

DOI: 10.12677/mos.2025.141046, PP. 490-498

Keywords: 有限新息率,亚奈奎斯特,谱估计,Fast Cadzow降噪算法
Finite Rate of Innovation
, Spectral Estimation, Sub-Nyquist, Fast Cadzow Denoising Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了有限新息率(Finite Rate of Innovation, FRI)信号采样中的Fast Cadzow迭代去噪方法。针对传统Cadzow算法在高维数据降噪中计算复杂度高、收敛速度慢的问题,使用了一种基于子空间投影优化的Fast Cadzow算法,通过减少奇异值分解(SVD)的计算量,提升了算法的效率。本文详细分析了Fast Cadzow算法的数学原理和实现过程,并通过数值仿真实验对其在不同信噪比(SNR)条件下的降噪效果和计算效率进行了验证。实验结果表明,与传统Cadzow算法相比,Fast Cadzow算法在PSNR、计算效率上均表现出显著优势,尤其在低信噪比环境中展现出更强的抗噪能力。本文的研究成果为FRI信号重构时的高效降噪提供了一种新的解决方案,对实际信号处理中的稀疏信号重构具有重要的应用价值。
This paper investigates the Fast Cadzow iterative denoising method in Finite Rate of Innovation (FRI) signal sampling. Addressing the limitations of the traditional Cadzow algorithm, which exhibits high computational complexity and slow convergence in high-dimensional data denoising, we employ an optimized Fast Cadzow algorithm based on subspace projection. This approach significantly reduces the computational load of singular value decomposition (SVD) operations, improving the algorithm’s efficiency. We thoroughly analyze the mathematical principles and implementation of the Fast Cadzow algorithm and validate its denoising performance and computational efficiency through numerical simulations under different signal-to-noise ratio (SNR) conditions. Experimental results demonstrate that, compared to the traditional Cadzow algorithm, the Fast Cadzow algorithm achieves significant improvements in PSNR and computational efficiency, with stronger noise resistance, especially in low SNR environments. The findings of this study offer an effective solution for efficient denoising in FRI signal reconstruction and hold substantial application value for sparse signal reconstruction in practical signal processing scenarios.

References

[1]  Vetterli, M., Marziliano, P. and Blu, T. (2002) Sampling Signals with Finite Rate of Innovation. IEEE Transactions on Signal Processing, 50, 1417-1428.
https://doi.org/10.1109/tsp.2002.1003065
[2]  Tur, R., Eldar, Y.C. and Friedman, Z. (2011) Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Imaging. IEEE Transactions on Signal Processing, 59, 1827-1842.
https://doi.org/10.1109/tsp.2011.2105480
[3]  Wang, H., Cai, J., Wang, T. and Wei, K. (2021) Fast Cadzow’s Algorithm and a Gradient Variant. Journal of Scientific Computing, 88, Article No. 41.
https://doi.org/10.1007/s10915-021-01550-8
[4]  Naaman, H., Mulleti, S. and Eldar, Y.C. (2022) FRI-TEM: Time Encoding Sampling of Finite-Rate-Of-Innovation Signals. IEEE Transactions on Signal Processing, 70, 2267-2279.
https://doi.org/10.1109/tsp.2022.3167146
[5]  Pan, H., Blu, T. and Dragotti, P.L. (2014) Sampling Curves with Finite Rate of Innovation. IEEE Transactions on Signal Processing, 62, 458-471.
https://doi.org/10.1109/tsp.2013.2292033
[6]  Chen, T., Zhao, L., Shi, L., et al. (2022) Signal Parameter Estimation Algorithm for Orthogonal Dipole Array Based on Finite Rate of Innovation. Journal of Electronics & Information Technology, 44, 2469-2477.
[7]  Fu, N., Zhang, H., Yun, S., Wei, Z. and Qiao, L. (2024) Time-based Finite-Rate-of-Innovation Sampling for Variable-Pulse-Width Signal. IEEE Transactions on Instrumentation and Measurement, 73, 1-9.
https://doi.org/10.1109/tim.2024.3353282
[8]  Wei, Z., Fu, N., Jiang, S., Qian, J. and Qiao, L. (2022) A General FRI Sampling System for Pulse Streams and the Multichannel Synchronization Method. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 4669-4673.
https://doi.org/10.1109/tcsii.2022.3196495
[9]  Huang, G., Zhang, S., Sheng, W., Lu, W. and Peng, H. (2023) Multichannel FRI Sampling System Based on Nonideal Filters. IEEE Transactions on Instrumentation and Measurement, 72, 1-13.
https://doi.org/10.1109/tim.2023.3298399
[10]  Sudhakar Reddy, P., Raghavendra, B.S. and Narasimhadhan, A.V. (2022) Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction. Circuits, Systems, and Signal Processing, 42, 2346-2365.
https://doi.org/10.1007/s00034-022-02220-2
[11]  Tan, V.Y.F. and Goyal, V.K. (2008) Estimating Signals with Finite Rate of Innovation from Noisy Samples: A Stochastic Algorithm. IEEE Transactions on Signal Processing, 56, 5135-5146.
https://doi.org/10.1109/tsp.2008.928510
[12]  Yun, S., Xu, H., Fu, N. and Qiao, L. (2023) Sub-Nyquist Sampling and Measurement of FRI Signals with Additive Shot Noise. IEEE Transactions on Instrumentation and Measurement, 72, 1-11.
https://doi.org/10.1109/tim.2023.3261912
[13]  Meng, S., Meng, C. and Wang, C. (2023) A Parameter Estimation Method with Improved Finite Rate of Innovation Sampling for Linear Frequency Modulation Signals. Electronics Letters, 59, e12828.
https://doi.org/10.1049/ell2.12828

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133