全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于饱和度–明度全变差的泊松噪声去除方法研究
A Study on Poisson Noise Removal Method Based on Saturation-Value Total Variation

DOI: 10.12677/mos.2025.141042, PP. 450-461

Keywords: 饱和度–明度全变差(SVTV),泊松噪声,图像复原,HSV颜色空间
Saturation-Value Total Variation (SVTV)
, Poisson Noise, Image Restoration, HSV Color Space

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于饱和度–明度全变差(SVTV)的泊松噪声去除方法。该方法旨在克服传统泊松噪声保真项非线性问题的限制,提高彩色图像复原效果。首先,本文通过将图像转换至HSV颜色空间,利用饱和度和明度的全变差约束来保持图像边缘和细节。其次,使用泰勒展开对泊松保真项进行近似,以简化计算复杂度。实验结果表明,该方法在去除泊松噪声方面效果显著,相比基于RGB空间的传统方法,其在图像保真度、噪声抑制和视觉效果上均有较大提升。本文结论表明,SVTV与泊松保真项的结合具有较好的去噪能力,能够有效平衡噪声抑制和图像细节的保留。
This paper proposes a novel Poisson noise removal method based on Saturation-Value Total Variation (SVTV) aimed at enhancing color image restoration. The objective of this study is to address the limitations associated with the nonlinearity of the classical Poisson fidelity term, thereby improving image restoration performance in the presence of Poisson noise. Initially, images are transformed into the HSV color space to apply total variation constraints on saturation and value channels, thus preserving edges and details more effectively. Subsequently, the Poisson fidelity term is approximated using a Taylor series expansion to reduce computational complexity and facilitate efficient optimization. Experimental results demonstrate that the proposed method achieves significant performance improvements in denoising compared to traditional RGB-space-based approaches. It offers better fidelity, noise suppression, and visual quality, showing the advantages of combining SVTV with the Poisson fidelity term. Conclusively, the study indicates that the SVTV method effectively balances noise suppression and detail preservation, making it a promising approach for Poisson noise removal in color image restoration.

References

[1]  Liu, X. and Zhang, Z. (2015) A Novel Color Image Denoising Algorithm Based on the Wavelet Transform and Total Variation Regularization. Mathematical Problems in Engineering, 2015, Article ID: 174381.
[2]  Li, H., et al. (2016) Image Denoising for Poisson Noise Using a Total Variation Method. Journal of Mathematical Imaging and Vision, 54, 124-137.
[3]  Rodríguez, P. (2013) Total Variation Regularization Algorithms for Images Corrupted with Different Noise Models: A Review. Journal of Electrical and Computer Engineering, 2013, Article ID: 217021.
https://doi.org/10.1155/2013/217021
[4]  Rudin, L.I., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 60, 259-268.
https://doi.org/10.1016/0167-2789(92)90242-f
[5]  Le, T., Chartrand, R. and Asaki, T.J. (2007) A Variational Approach to Reconstructing Images Corrupted by Poisson Noise. Journal of Mathematical Imaging and Vision, 27, 257-263.
https://doi.org/10.1007/s10851-007-0652-y
[6]  Brune, C., Sawatzky, A. and Burger, M. (2009) Bregman-EM-TV Methods with Application to Optical Nanoscopy. In: Tai, X.C., Mørken, K., Lysaker, M. and Lie, K.A., Eds., Scale Space and Variational Methods in Computer Vision, Springer, 235-246.
https://doi.org/10.1007/978-3-642-02256-2_20
[7]  Wu, C. and Tai, X. (2010) Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models. SIAM Journal on Imaging Sciences, 3, 300-339.
https://doi.org/10.1137/090767558
[8]  Blomgren, P. and Chan, T.F. (1998) Color TV: Total Variation Methods for Restoration of Vector-Valued Images. IEEE Transactions on Image Processing, 7, 304-309.
https://doi.org/10.1109/83.661180
[9]  Chen, J., et al. (2013) Color Image Denoising Using Total Variation and Poisson Noise Model. Journal of Mathematical Imaging and Vision, 46, 1-13.
[10]  Jia, Z., Ng, M.K. and Wang, W. (2019) Color Image Restoration by Saturation-Value Total Variation. SIAM Journal on Imaging Sciences, 12, 972-1000.
https://doi.org/10.1137/18m1230451
[11]  Wang, W. and Song, Q. (2022) Color Image Restoration Based on Saturation-Value Total Variation Plus L1 Fidelity. Inverse Problems, 38, Article ID: 085009.
https://doi.org/10.1088/1361-6420/ac7a2b
[12]  Zhang, L., et al. (2020) Total Variation-Based Image Restoration for Poisson Noise Removal. IEEE Transactions on Image Processing, 29, 7650-7663.
[13]  Kang, Y., et al. (2020) Deep Learning for Image Denoising: A Survey. IEEE Transactions on Image Processing, 29, 789-805.
[14]  Huang, Y., et al. (2022) A Hybrid Method for Denoising Poisson Noisy Images Based on Total Variation. Signal Processing, 187, Article ID: 108313.
[15]  Li, Y., et al. (2021) Poisson Noise Removal Using a Two-Stage Total Variation Model. IEEE Transactions on Image Processing, 30, 5002-5015.
[16]  Shen, X., et al. (2020) Efficient Image Denoising with Total Variation and Low-Rank Approaches. Applied Mathematics and Computation, 373, Article ID: 125042.
[17]  Zhang, Z., et al. (2023) Adaptive Nonlocal Total Variation for Poisson Image Denoising. Signal Processing, 206, Article ID: 108758.
[18]  Yu, D., et al. (2022) Color Image Denoising Based on Total Variation and Poisson Noise Model. Journal of Mathematical Imaging and Vision, 64, 369-382.
[19]  Zhang, H., et al. (2021) Image Denoising Based on Nonlocal Means and Poisson Noise Model. Journal of Image and Graphics, 9, 1-10.
[20]  Zhou, Y. and Zhang, Y. (2019) A Non-Local Total Variation Model for Poisson Noise Removal in Color Images. Signal Processing, 156, 144-156.
[21]  Getreuer, P. (2012) Rudin-Osher-Fatemi Total Variation Denoising Using Split Bregman. Image Processing OnLine, 2, 74-95.
https://doi.org/10.5201/ipol.2012.g-tvd
[22]  Zanella, R., Boccacci, P., Zanni, L. and Bertero, M. (2009) Efficient Gradient Projection Methods for Edge-Preserving Removal of Poisson Noise. Inverse Problems, 25, Article ID: 045010.
https://doi.org/10.1088/0266-5611/25/4/045010
[23]  Denis, P., Carre, P. and Fernandez-Maloigne, C. (2007) Spatial and Spectral Quaternionic Approaches for Colour Images. Computer Vision and Image Understanding, 107, 74-87.
https://doi.org/10.1016/j.cviu.2006.11.019
[24]  Wang, Y., Yang, J., Yin, W. and Zhang, Y. (2008) A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences, 1, 248-272.
https://doi.org/10.1137/080724265
[25]  Setzer, S., Steidl, G. and Teuber, T. (2010) Deblurring Poissonian Images by Split Bregman Techniques. Journal of Visual Communication and Image Representation, 21, 193-199.
[26]  Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13, 600-612.
https://doi.org/10.1109/tip.2003.819861
[27]  Chen, X., Zhan, S., Ji, D., Xu, L., Wu, C. and Li, X. (2018) Image Denoising via Deep Network Based on Edge Enhancement. Journal of Ambient Intelligence and Humanized Computing, 14, 14795-14805.
https://doi.org/10.1007/s12652-018-1036-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133