全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BUCK变换器滑模控制研究仿真
Research and Simulation of Sliding Mode Control of BUCK Converter

DOI: 10.12677/mos.2025.141040, PP. 430-439

Keywords: 滑模控制器,BUCK转换器,PI调节,双闭环控制
Sliding Mode Controller
, BUCK Converter, PI Regulation, Double Closed-Loop Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文详细讨论了BUCK型降压变换器的滑模变结构控制理论,推导了描述buck变换器的动力学方程,并设计了一种滑模控制(SMC)下的buck变换器。当负载和输入电压在一定程度上发生突变时,该控制器依然能够控制系统使其稳定输出期望电压。此外还提出一种新的方法,采用双闭环控制,即一个内环电流控制和一个外环电压控制。电流环采用滑模控制,电压环采用线性PI控制,并对这两种控制器在负载阶跃变化和输入电压变化情况下进行对比,采用Matlab/Simulink进行仿真,实验结果表明该方法能有效降低Buck变换器的稳态误差,提高其动态响应以及系统的抗干扰能力,增强其对负载突变和输入电压波动的鲁棒性。
This article provides an in-depth discussion of the sliding mode variable structure control theory for buck converters and derives the dynamic equations that describe the behavior of such converters. A novel sliding mode control (SMC) strategy for buck converters is introduced, specifically designed to maintain stable output voltage despite sudden changes in load and input voltage. Moreover, the paper proposes a dual-loop control approach, comprising an inner current control loop and an outer voltage control loop. The current loop utilizes sliding mode control, while the voltage loop employs linear PI (Proportional-Integral) control. The performance of these two control strategies is compared under conditions of load step changes and input voltage variations. Simulations are conducted using Matlab/ Simulink, demonstrating that the proposed method significantly reduces the steady-state error of the buck converter, enhances its dynamic response, and improves the system’s immunity to disturbances, thus increasing its robustness against load surges and input voltage fluctuations.

References

[1]  Mohan, N., Undeland, T.M. and Robbins, W.P. (2003) Power Electronics: Converters, Applications, and Design. John Wiley Sons.
[2]  Guo, X., Wu, Q., Du, Y., Li, X. and Cui, Z. (2025) A Wide-Output Buck DC-DC Power Management IC. Integration, 100, Article ID: 102278.
https://doi.org/10.1016/j.vlsi.2024.102278
[3]  Mustafa, G., Ahmad, F., Zhang, R., Haq, E.U. and Hussain, M. (2023) Adaptive Sliding Mode Control of Buck Converter Feeding Resistive and Constant Power Load in DC Microgrid. Energy Reports, 9, 1026-1035.
https://doi.org/10.1016/j.egyr.2022.11.131
[4]  Utkin, V. (1977) Variable Structure Systems with Sliding Modes. IEEE Transactions on Automatic Control, 22, 212-222.
https://doi.org/10.1109/tac.1977.1101446
[5]  He, Y. and Luo, F.L. (2006) Sliding-Mode Control for Dc-Dc Converters with Constant Switching Frequency. IEE ProceedingsControl Theory and Applications, 153, 37-45.
https://doi.org/10.1049/ip-cta:20050030
[6]  Harashima, F., Hashimoto, H. and Kondo, S. (1985) MOSFET Converter-Fed Position Servo System with Sliding Mode Control. IEEE Transactions on Industrial Electronics, 32, 238-244.
https://doi.org/10.1109/tie.1985.350165
[7]  Emadi, A. and Ehsani, M. (2000) Negative Impedance Stabilizing Controls for PWM Dc/Dc Converters Using Feedback Linearization Techniques. 35th Intersociety Energy Conversion Engineering Conference and Exhibit, Las Vegas, 24-28 July 2000, 613-620.
https://doi.org/10.2514/6.2000-2912
[8]  Fossas, E., Martinez, L. and Ordinas, J. (1992) Sliding Mode Control Reduces Audiosusceptibility and Load Perturbation in the Cuk Converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39, 847-849.
https://doi.org/10.1109/81.199870

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133