全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新工科背景下线性代数课程思政元素的挖掘与实践路径
Explorations and Practice Paths of Course Ideological and Political Elements in Linear Algebra under the Background of New Engineering

DOI: 10.12677/ae.2025.151056, PP. 372-379

Keywords: 线性代数,课程思政,多元文化,立德树人
Linear Algebra
, Course Ideological and Political Education, Multiculturalism, Cultivating Virtues and Cultivating People

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章首先从四个方面提出了新工科背景下线性代数课程思政的挖掘方式与教学目的,即教师在传授知识的过程中通过线性代数包含的数学文化故事、与之相关的生活案例、科学实践以及课程本身所蕴含的传统文化和哲学道理来培养学生的家国情怀、爱国主义、科研精神以及唯物主义辩证思想。其次,探索并给出了线性代数教学中课程思政的实践路径,从而为教师在新工科背景下线性代数教学中融入课程思政提供一定的参考。
This paper first proposes the exploration methods and teaching objectives of courses ideological and political education from four aspects in linear algebra under the background of new engineering, that is, during the process of imparting knowledge, teachers should cultivate students’ patriotism, scientific research spirit, and materialistic and dialectic philosophy through traditional culture and philosophical principles contained in mathematical cultural stories, related life cases, scientific practices, and the curriculum itself of linear algebra. Secondly, the practical paths of integrating ideological and political education into linear algebra teaching have been explored and provided, thus it provides some reference for teachers to integrate ideological and political education into linear algebra teaching in the context of new engineering.

References

[1]  教育部高等教育司. 关于开展新工科研究与实践的通知(教高司函[2017] 6号) [EB/OL].
http://www.moe.gov.cn/s78/A08/tongzhi/201702/t20170223_297158.html, 2017-02-20.
[2]  黄毅, 唐宏宾, 何志勇, 周振华. 新工科背景下的机械动力学课程教学新模式[J]. 大学教育, 2021, 7(3): 71-73.
[3]  人民网. 培养什么人 怎样培养人 为谁培养人[EB/OL].
https://baijiahao.baidu.com/s?id=1676679795251496076&wfr=spider&for=pc, 2020-09-02.
[4]  同济大学数学系. 工程数学 线性代数[M]. 第6版. 北京: 高等教育出版社, 2014.
[5]  孙英特. 新工科背景下线性代数的教学改革[J]. 数学学习与研究, 2022(5): 23-25.
[6]  高忠社. 数值分析教学中融入多元文化精髓的实践探索[J]. 文化创新比较研究, 2022, 6(22): 165-168, 172.
[7]  Kac, M. (1966) Can One Hear the Shape of a Drum? American Mathematical Monthly, 73, 1-23.
[8]  Cvetkovic, D.M., Rowlinson, P. and Simic, S. (2010) An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press.
[9]  光明日报. 把握新时代追求美好生活的辩证关系[EB/OL]. 第15版.
https://news.china.com/zw/news/13000776/20200928/38796473_2.html, 2020-09-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133