全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Progress in the Regulation of Lipid Metabolism by the Orphan Nuclear Receptor Nur77

DOI: 10.4236/jbm.2025.131013, PP. 163-172

Keywords: Orphan Nuclear Receptor, Nur77, NR4A1, Lipid Metabolism, COPD

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neuron-derived clone 77 (Nur77) is a member of the NR4A subfamily that plays critical roles in apoptosis, survival, proliferation, autophagy, angiogenesis, inflammatory responses, DNA repair, glycolipid metabolism and energy consumption. The deregulation of Nur77 signalling often relates to various serious diseases, including cancer and non-cancer diseases. A systematic review is necessary for the better understanding of Nur77 in clinical treatment. In this article, we comprehensively conclude the lipid regulation function and expression of Nur77, and its role in COPD. Finally, we prospect that development of drugs and clinical biochemical investigations targeting of Nur77 has considerable potential within healthcare.

References

[1]  Wu, L. and Chen, L. (2018) Characteristics of Nur77 and Its Ligands as Potential Anticancer Compounds (Review). Molecular Medicine Reports, 18, 4793-4801.
https://doi.org/10.3892/mmr.2018.9515
[2]  Zhang, C., Xu, X., Shang, Y., et al. (2014) Orphan Nuclear Receptor Nur77 and Pulmonary Disease. International Journal of Respiration, 34, 1900-1904.
[3]  Wang, K., Wang, M., Shang, Y., He, Y., Li, Q., Gao, W., et al. (2020) Regulatory Effects of Nur77 on Airway Remodeling and ASMC Proliferation in House Dust Mite-Induced Asthma. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 4565246.
https://doi.org/10.1155/2020/4565246
[4]  Ding, R., Sun, X., Yi, B., Liu, W., Kazama, K., Xu, X., et al. (2021) Nur77 Attenuates Inflammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 65, 288-299.
https://doi.org/10.1165/rcmb.2020-0524oc
[5]  Palumbo-Zerr, K., Zerr, P., Distler, A., Fliehr, J., Mancuso, R., Huang, J., et al. (2015) Orphan Nuclear Receptor NR4A1 Regulates Transforming Growth Factor-β Signaling and Fibrosis. Nature Medicine, 21, 150-158.
https://doi.org/10.1038/nm.3777
[6]  Chao, L.C., Wroblewski, K., Zhang, Z., Pei, L., Vergnes, L., Ilkayeva, O.R., et al. (2009) Insulin Resistance and Altered Systemic Glucose Metabolism in Mice Lacking Nur77. Diabetes, 58, 2788-2796.
https://doi.org/10.2337/db09-0763
[7]  Pols, T.W.H., Ottenhoff, R., Vos, M., Levels, J.H.M., Quax, P.H.A., Meijers, J.C.M., et al. (2008) Nur77 Modulates Hepatic Lipid Metabolism through Suppression of SREBP1c Activity. Biochemical and Biophysical Research Communications, 366, 910-916.
https://doi.org/10.1016/j.bbrc.2007.12.039
[8]  Liu, Y. (2012) Study on GK-Nur77Interaction and Its Regulation of Lipid Metabolism in Liver. Master’s Thesis, Pharmaceutical Engineering.
[9]  Liu, T.T. (2022) Nur77 Promotes Chaperon-Mediated Autophagy to Alleviate Aging-Related Non-Alcoholic Fatty Liver Disease. Ph.D. Thesis, China Medical University.
[10]  Wang, Q. (2012) The Orphan Nuclear Receptor Nur77 Regulates Hepatic Cholesterol Metabolism through the Suppression of LDLR and HMGCR Expression. Molecular Medicine Reports, 5, 1541-1547.
https://doi.org/10.3892/mmr.2012.850
[11]  Chukijrungroat, N., Khamphaya, T., Weerachayaphorn, J., Songserm, T. and Saengsirisuwan, V. (2017) Hepatic FGF21 Mediates Sex Differences in High-Fat High-Fructose Diet-Induced Fatty Liver. American Journal of Physiology-Endocrinology and Metabolism, 313, E203-E212.
https://doi.org/10.1152/ajpendo.00076.2017
[12]  Min, A., Bae, K., Jung, Y., Choi, Y., Kim, M., Kim, J., et al. (2014) Orphan Nuclear Receptor Nur77 Mediates Fasting-Induced Hepatic Fibroblast Growth Factor 21 Expression. Endocrinology, 155, 2924-2931.
https://doi.org/10.1210/en.2013-1758
[13]  Ahuja, P., Bi, X., Ng, C.F., Tse, M.C.L., Hang, M., Pang, B.P.S., et al. (2022) SRC Homology 3 Domain Binding Kinase 1 Protects against Hepatic Steatosis and Insulin Resistance through the Nur77-FGF21 Pathway. Hepatology, 77, 213-229.
https://doi.org/10.1002/hep.32501
[14]  Maxwell, M.A., Cleasby, M.E., Harding, A., Stark, A., Cooney, G.J. and Muscat, G.E.O. (2005) Nur77 Regulates Lipolysis in Skeletal Muscle Cells. Journal of Biological Chemistry, 280, 12573-12584.
https://doi.org/10.1074/jbc.m409580200
[15]  Chen, F., Yu, Y., Tian, H., Ma, G., Ma, R., Tian, T., et al. (2023) Nur77 Is Involved in the Regulation of Obesity-Related Lower Muscle Mass by Promoting Pten Degradation. The FASEB Journal, 37, e23083.
https://doi.org/10.1096/fj.202201983rr
[16]  Shao, Q., Han, F., Peng, S. and He, B. (2016) Nur77 Inhibits oxLDL Induced Apoptosis of Macrophages via the P38 MAPK Signaling Pathway. Biochemical and Biophysical Research Communications, 471, 633-638.
https://doi.org/10.1016/j.bbrc.2016.01.004
[17]  Fu, Y., Luo, L., Luo, N., Zhu, X. and Garvey, W.T. (2007) NR4A Orphan Nuclear Receptors Modulate Insulin Action and the Glucose Transport System: Potential Role in Insulin Resistance. Journal of Biological Chemistry, 282, 31525-31533.
https://doi.org/10.1074/jbc.m701132200
[18]  Carpentier, R., Sacchetti, P., Ségard, P., Staels, B. and Lefebvre, P. (2007) The Glucocorticoid Receptor Is a Co-Regulator of the Orphan Nuclear Receptor Nurr1. Journal of Neurochemistry, 104, 777-789.
https://doi.org/10.1111/j.1471-4159.2007.05055.x
[19]  Chao, L.C., Bensinger, S.J., Villanueva, C.J., Wroblewski, K. and Tontonoz, P. (2008) Inhibition of Adipocyte Differentiation by Nur77, Nurr1, and Nor1. Molecular Endocrinology, 22, 2596-2608.
https://doi.org/10.1210/me.2008-0161
[20]  Zhang, Y., Federation, A.J., Kim, S., O’Keefe, J.P., Lun, M., Xiang, D., et al. (2018) Targeting Nuclear Receptor NR4A1-Dependent Adipocyte Progenitor Quiescence Promotes Metabolic Adaptation to Obesity. Journal of Clinical Investigation, 128, 4898-4911.
https://doi.org/10.1172/jci98353
[21]  Qin, D., Yang, Y., Pu, Z., Liu, D., Yu, C., Gao, P., et al. (2018) NR4A1 Retards Adipocyte Differentiation or Maturation via Enhancing GATA2 and p53 Expression. Journal of Cellular and Molecular Medicine, 22, 4709-4720.
https://doi.org/10.1111/jcmm.13715
[22]  Yang, P., Hou, P., Liu, F., Hong, W., Chen, H., Sun, X., et al. (2020) Blocking PPARγ Interaction Facilitates Nur77 Interdiction of Fatty Acid Uptake and Suppresses Breast Cancer Progression. Proceedings of the National Academy of Sciences of the United States of America, 117, 27412-27422.
https://doi.org/10.1073/pnas.2002997117
[23]  Bian, H., Liang, X., Lu, D., Lin, J., Lu, X., Jin, J., et al. (2024) In Silico Discovery of Stapled Peptide Inhibitor Targeting the Nur77‐PPARγ Interaction and Its Anti‐breast-Cancer Efficacy. Advanced Science, 11, e2308435.
https://doi.org/10.1002/advs.202308435
[24]  Li, X., Wang, Z., Zheng, Y., Guan, Y., Yang, P., Chen, X., et al. (2018) Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation. Molecular Cell, 69, 480-492.e7.
https://doi.org/10.1016/j.molcel.2018.01.001
[25]  Reddy, A.T., Lakshmi, S.P., Banno, A., Jadhav, S.K., Pulikkal Kadamberi, I., Kim, S.C., et al. (2020) Cigarette Smoke Downregulates Nur77 to Exacerbate Inflammation in Chronic Obstructive Pulmonary Disease (COPD). PLOS ONE, 15, e0229256.
https://doi.org/10.1371/journal.pone.0229256
[26]  Deng, J.H., Wang, Z.B. and Huang, B.H. (2021) Expression and Clinical Significance of Serum NR4A1 in Chronic Obstructive Pulmonary Disease. Journal of Clinical Pulmonary Medicine, 26, 1034-1037.
[27]  Qin, H., Gao, F., Wang, Y., Huang, B., Peng, L., Mo, B., et al. (2019) Nur77 Promotes Cigarette Smoke-Induced Autophagic Cell Death by Increasing the Dissociation of Bcl2 from Beclin-1. International Journal of Molecular Medicine, 44, 25-36.
https://doi.org/10.3892/ijmm.2019.4184
[28]  Azimzadeh, S., Mirzaie, M., Jafari, M., Mehrani, H., Shariati, P. and Khodabandeh, M. (2015) Signaling Network of Lipids as a Comprehensive Scaffold for Omics Data Integration in Sputum of COPD Patients. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1851, 1383-1393.
https://doi.org/10.1016/j.bbalip.2015.07.005
[29]  Kurosaki, H., Ishii, T., Motohashi, N., Motegi, T., Yamada, K., Kudoh, S., et al. (2009) Extent of Emphysema on HRCT Affects Loss of Fat-Free Mass and Fat Mass in COPD. Internal Medicine, 48, 41-48.
https://doi.org/10.2169/internalmedicine.48.1102
[30]  Wang, L., van Iersel, L.E.J., Pelgrim, C.E., Lu, J., van Ark, I., Leusink-Muis, T., et al. (2022) Effects of Cigarette Smoke on Adipose and Skeletal Muscle Tissue: In Vivo and in Vitro Studies. Cells, 11, Article 2893.
https://doi.org/10.3390/cells11182893
[31]  Ye, M. and Li, F. (2022) Role of Fatty Acid Metabolism in the Pathogenesis of Chronic Obstructive Pulmonary Disease. International Journal of Respiration, 42, 895-900.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133