This work aims at the mathematical modeling of a parabolic trough concentrator, the numerical resolution of the resulting equation, as well as the simulation of the heat transfer fluid heating process. To do this, a thermal balance was established for the heat transfer fluid, the absorber and the glass. This allowed us to establish an equation system whose resolution was done by the finite difference method. Then, a computer program was developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. The numerical resolution made it possible to obtain the temperatures of the heat transfer fluid, the absorber and the glass. The simulation of the fluid heating process was done in one-hour time steps, from six in the morning to six in the afternoon. The results obtained show that the temperature difference between the inlet and the outlet of the sensor is very significant. These results obtained, regarding the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors, allow for the improvement of the performances of our prototype.
References
[1]
Khireddine, B. and Cherif, B. (2016) Etude numérique tridimensionnelle des caractéristiques thermiques du tube absorbeur d’un capteur solaire cylindro-parabolique. 3rd International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP 2016, Algeria, 30-31 October 2016, 555-560.
[2]
Mahinder Singh, B.S. and Sulaiman, F. (2003) Designing a Solar Thermal Cylindrical Parabolic Trough Concentrator by Simulation. World Climate & Energy Event, 2003, 143-149.
[3]
Arnaoutakis, G.E. and Katsaprakakis, D.A. (2021) Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration. Energies, 14, Article 6229. https://doi.org/10.3390/en14196229
[4]
Katsaprakakis, D. (2019) Introducing a Solar-Combi System for Hot Water Production and Swimming Pools Heating in the Pancretan Stadium, Crete, Greece. Energy Procedia, 159, 174-179. https://doi.org/10.1016/j.egypro.2018.12.047
[5]
Odeh, S.D., Behnia, M. and Morrison, G.L. (2003) Performance Evaluation of Solar Thermal Electric Generation Systems. Energy Conversion and Management, 44, 2425-2443. https://doi.org/10.1016/s0196-8904(03)00011-6
[6]
Adel, L. (2021) Amélioration des échanges thermiques dans l’absorbeur d’un concentrateur solaire cylindro-parabolique. Thèse de Doctorat, Université Hadj Lakhdar.
[7]
Mwesigye, A. and Meyer, J.P. (2017) Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver with Different Nanofluids and at Different Concentration Ratios. Applied Energy, 193, 393-413. https://doi.org/10.1016/j.apenergy.2017.02.064
[8]
Bitam, E.W., Demagh, Y., Hachicha, A.A., Benmoussa, H. and Kabar, Y. (2018) Numerical Investigation of a Novel Sinusoidal Tube Receiver for Parabolic Trough Technology. Applied Energy, 218, 494-510. https://doi.org/10.1016/j.apenergy.2018.02.177
[9]
Gong, X., Wang, F., Wang, H., Tan, J., Lai, Q. and Han, H. (2017) Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector with Pin Fin Arrays Inserting. Solar Energy, 144, 185-202. https://doi.org/10.1016/j.solener.2017.01.020
[10]
Bellos, E. and Tzivanidis, C. (2018) Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber. Energies, 11, Article 1129. https://doi.org/10.3390/en11051129
[11]
Bellos, E., Tzivanidis, C. and Tsimpoukis, D. (2018) Optimum Number of Internal Fins in Parabolic Trough Collectors. Applied Thermal Engineering, 137, 669-677. https://doi.org/10.1016/j.applthermaleng.2018.04.037
[12]
Benzenine, H., Saim, R., Abboudi, S., Imine, O., Oztop, H.F. and Abu-Hamdeh, N. (2018) Numerical Study of a Three-Dimensional Forced Laminar Flow in a Channel Equipped with a Perforated Baffle. Numerical Heat Transfer, Part A: Applications, 73, 881-894. https://doi.org/10.1080/10407782.2018.1486645
[13]
García-Valladares, O. and Velázquez, N. (2009) Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers. International Journal of Heat and Mass Transfer, 52, 597-609. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.004
[14]
Fernández-García, A., Zarza, E., Valenzuela, L. and Pérez, M. (2010) Parabolic-trough Solar Collectors and Their Applications. Renewable and Sustainable Energy Reviews, 14, 1695-1721. https://doi.org/10.1016/j.rser.2010.03.012
[15]
Campo, A. (2005) Quick Identification of Gases for Enhancing Heat Transfer in Turbulent Pipe Flows Using Standard Correlation Equations for the Convective Coefficient and the Friction Factor. Applied Thermal Engineering, 25, 2029-2038. https://doi.org/10.1016/j.applthermaleng.2004.02.015
[16]
Grald, E.W. and Kuehn, T.H. (1989) Performance Analysis of a Parabolic Trough Solar Collector with a Porous Absorber Receiver. Solar Energy, 42, 281-292. https://doi.org/10.1016/0038-092x(89)90030-3
[17]
Iqbal, M. (1983) An Introduction to Solar Energy. Academic Press.
[18]
Lienhard, J.H. (2003) A Heat Transfer Textbook. 3rd Edition, Dover Publications.
[19]
Stuetzele, T.A. (2002) Automatic Control of the 30 Mwe SEGS VI Parabolic Trough Plant. Master’s Thesis, University of Wisconsin.
[20]
Ammari, H.D. and Nimir, Y.L. (2003) Experimental and Theoretical Evaluation of the Performance of a Tar Solar Water Heater. Energy Conversion and Management, 44, 3037-3055. https://doi.org/10.1016/s0196-8904(03)00076-1
[21]
Petit, J.-P. (1989-1990) Convection Naturelle, Ecole Centrale Paris.
[22]
Merzaka, A. (2002) Simulation et prédiction des pertes thermiques d’un Absorbeur pour un concentrateur cylindro-parabolique. Thèse de magister, Batna.
[23]
Alphilippe, B.M. and Stouffs, P. (2003) Conversion thermodynamique de l’énergie solaire dans des installations de faible ou de moyenne puissance: Réflexion sur choix du meilleur degré de concentration. https://www.academia.edu/66681454/Conversion_Thermodynamique_de_lEnergie_Solaire_dans_des_Installations_de_Faible_ou_de_Moyenne_Puissance_R%C3%A9flexions_sur_le_Choix_du_Meilleur_Degr%C3%A9_de_Concentration
[24]
Das, T. and Pramanik, K. (2004) Modelling and Performance Evaluation of Solar Water Heating Systems. Word Renewable Energy Congress VIII, WREC 2004, Denver, 29 August-3 September 2004, 504.
[25]
Mullick, S.C. and Nanda, S.K. (1989) An Improved Technique for Computing the Heat Loss Factor of a Tubular Absorber. Solar Energy, 42, 1-7. https://doi.org/10.1016/0038-092x(89)90124-2
[26]
Klein, S.A., Duffie, J.A. and Beckman, W.A. (1974) Transient Considerations of Flat-Plate Solar Collectors. Journal of Engineering for Power, 96, 109-113. https://doi.org/10.1115/1.3445757