The purpose of our study was to determine the class I and II HLA polymorphism in an Ivorian population and to evaluate whether alleles are associated to resistance or susceptibility to HIV-1 infection. The study took place from February 2021 to November 2023 at the National Blood Bank of Ivory Coast Abidjan for blood collection and the Immunogenetics laboratory of EFS in Marseille for HLA typing. We used 79 blood samples from heterosexual couples divided into 3 groups: serodiscordant couples, HIV-1 positive couples and HIV-1 negative couples. HLA phenotyping was performed by next-generation sequencing on the Miseq? platform and allelic frequencies were calculated. Comparison of frequencies between patients and controls was made with Fisher’s exact test. We detected a total of 140 alleles (73 Class I HLA and 67 Class II HLA). The most frequent were HLA-A*74 (0.1266), HLA-B*53:01 (0.1962), HLA-C*04:01 (0.2848), HLA-DRB1*07:01 (0.1202), DQA1* 01:02 (0.2848), HLA-DQB1*02:02(0.2025), DPA1*02:01 (0.3861) and HLA-DPB1*01:01 (0.4051). Allelic frequencies were not statistically different between HIV-1 positive and negative subjects. However, we observed alleles present only in subjects living with HIV-1. This study presents for the first time high-resolution typing data of class I and II HLA alleles in Ivory Coast. We found alleles present only in HIV-1 positive subjects and others only in HIV-1 negative exposed partners suggesting their role in resistance or susceptibility to HIV-1 infection.
References
[1]
(2024) Statistiques mondiales sur le VIH. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_fr.pdf
[2]
Trowsdale, J. (2011) The MHC, Disease and Selection. ImmunologyLetters, 137, 1-8. https://doi.org/10.1016/j.imlet.2011.01.002
[3]
Blackwell, J.M., Jamieson, S.E. and Burgner, D. (2009) HLA and Infectious Diseases. ClinicalMicrobiologyReviews, 22, 370-385. https://doi.org/10.1128/cmr.00048-08
[4]
Espinosa, E. and Chillet, P. (2010) Immunologie. Ellipses, Paris, 512 p. https://www.eyrolles.com/Sciences/Livre/immunologie-9782729860769/
[5]
Robinson, J., Barker, D.J. and Marsh, S.G.E. (2024) 25 Years of the IPD-IMGT/HLA Database. HLA, 103, e15549. https://doi.org/10.1111/tan.15549
[6]
Jeffery, K.J.M. and Bangham, C.R.M. (2000) Do Infectious Diseases Drive MHC Diversity? MicrobesandInfection, 2, 1335-1341. https://doi.org/10.1016/s1286-4579(00)01287-9
[7]
Martin, M.P., Gao, X., Lee, J., Nelson, G.W., Detels, R., Goedert, J.J., et al. (2002) Epistatic Interaction between KIR3DS1 and HLA-B Delays the Progression to Aids. NatureGenetics, 31, 429-434. https://doi.org/10.1038/ng934
[8]
Carrington, M., Nelson, G.W., Martin, M.P., Kissner, T., Vlahov, D., Goedert, J.J., et al. (1999) HLA and HIV-1: Heterozygote Advantage and B*35-Cw*04 Disadvantage. Science, 283, 1748-1752. https://doi.org/10.1126/science.283.5408.1748
[9]
Pereyra, F., Addo, M.M., Kaufmann, D.E., Liu, Y., Miura, T., Rathod, A., et al. (2008) Genetic and Immunologic Heterogeneity among Persons Who Control HIV Infection in the Absence of Therapy. TheJournalofInfectiousDiseases, 197, 563-571. https://doi.org/10.1086/526786
[10]
Ferre, A.L., Hunt, P.W., McConnell, D.H., Morris, M.M., Garcia, J.C., Pollard, R.B., et al. (2010) HIV Controllers with HLA-DRB1*13 and HLA-DQB1*06 Alleles Have Strong, Polyfunctional Mucosal Cd4+T-Cell Responses. JournalofVirology, 84, 11020-11029. https://doi.org/10.1128/jvi.00980-10
[11]
Lambotte, O. (2012) Les patients HIV controllers. Médecine/Sciences, 28, 172-178. https://doi.org/10.1051/medsci/2012282015
[12]
Li, L.Z., Liu, Y., Miroslaw, K. and Gorny, C. (2020) Association of Diverses Genotypes and Phenotypes of Immunes Cells and Immunoglobulines with the Course of HIV-1 Infection. Frontiers in Immunology, 9, Article 2735. https://doi.org/10.3389/fimmu.2018.02735
[13]
Naruto, T., Gatanaga, H., Nelson, G., Sakai, K., Carrington, M., Oka, S., et al. (2012) HLA Class I-Mediated Control of HIV-1 in the Japanese Population, in Which the Protective HLA-B*57 and HLA-B*27 Alleles Are Absent. JournalofVirology, 86, 10870-10872. https://doi.org/10.1128/jvi.00689-12
[14]
Mori, M., Wichukchinda, N., Miyahara, R., Rojanawiwat, A., Pathipvanich, P., Maekawa, T., et al. (2014) HLA-B*35: 05 Is a Protective Allele with a Unique structure among HIV-1 CRF01_AE-Infected Thais, in Whom the B*57 Frequency Is Low. AIDS, 28, 959-967. https://doi.org/10.1097/qad.0000000000000206
[15]
Fellay, J., Ge, D., Shianna, K.V., Colombo, S., Ledergerber, B., Cirulli, E.T., et al. (2009) Common Genetic Variation and the Control of HIV-1 in Humans. PLOSGenetics, 5, e1000791. https://doi.org/10.1371/journal.pgen.1000791
[16]
[authors] (2010) The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation. Science, 330, 1551-1557. https://doi.org/10.1126/science.1195271
[17]
Carlson, J.M., Listgarten, J., Pfeifer, N., Tan, V., Kadie, C., Walker, B.D., et al. (2012) Widespread Impact of HLA Restriction on Immune Control and Escape Pathways of HIV-1. JournalofVirology, 86, 5230-5243. https://doi.org/10.1128/jvi.06728-11
[18]
Leslie, A., Matthews, P.C., Listgarten, J., Carlson, J.M., Kadie, C., Ndung’u, T., et al. (2010) Additive Contribution of HLA Class I Alleles in the Immune Control of HIV-1 Infection. JournalofVirology, 84, 9879-9888. https://doi.org/10.1128/jvi.00320-10
[19]
Kiepiela, P., Leslie, A.J., Honeyborne, I., Ramduth, D., Thobakgale, C., Chetty, S., et al. (2004) Dominant Influence of HLA-B in Mediating the Potential Co-Evolution of HIV and Hla. Nature, 432, 769-775. https://doi.org/10.1038/nature03113
[20]
Gao, X., Nelson, G.W., Karacki, P., Martin, M.P., Phair, J., Kaslow, R., et al. (2001) Effect of a Single Amino Acid Change in MHC Class I Molecules on the Rate of Progression to Aids. NewEnglandJournalofMedicine, 344, 1668-1675. https://doi.org/10.1056/nejm200105313442203
[21]
Tang, J., Malhotra, R., Song, W., Brill, I., Hu, L., Farmer, P.K., et al. (2010) Human Leukocyte Antigens and HIV Type 1 Viral Load in Early and Chronic Infection: Predominance of Evolving Relationships. PLOSONE, 5, e9629. https://doi.org/10.1371/journal.pone.0009629
[22]
Ellis, J.M., Hoyer, R.J., Costello, C.N., Mshana, R.N., Quakyi, I.A., Mshana, M.N., et al. (2001) HLA-B Allele Frequencies in Côte D’ivoire Defined by Direct DNA Sequencing: Identification of HLA-B*1405, B*4410, and B*5302. TissueAntigens, 57, 339-343. https://doi.org/10.1034/j.1399-0039.2001.057004339.x
[23]
Jennes, W., Verheyden, S., Demanet, C., Adjé-Touré, C.A., Vuylsteke, B., Nkengasong, J.N., et al. (2006) Cutting Edge: Resistance to HIV-1 Infection among African Female Sex Workers Is Associated with Inhibitory KIR in the Absence of Their HLA Ligands. TheJournalofImmunology, 177, 6588-6592. https://doi.org/10.4049/jimmunol.177.10.6588
[24]
Masciotra, S., Luo, W., Youngpairoj, A.S., Kennedy, M.S., Wells, S., Ambrose, K., et al. (2013) Performance of the Alere Determine™ HIV-1/2 Ag/ab Combo Rapid Test with Specimens from HIV-1 Seroconverters from the US and HIV-2 Infected Individuals from Ivory Coast. JournalofClinicalVirology, 58, e54-e58. https://doi.org/10.1016/j.jcv.2013.07.002
[25]
Loukou, Y.G., Cabran, M.A., Yessé, Z.N., Adouko, B.M.O., Lathro, S.J. and Agbessi-Kouassi, K.B.T. (2013) Performance of Rapid Tests and Algorithms for HIV Screening in Abidjan, Ivory Coast. JournaloftheInternationalAssociationofProvidersofAIDSCare (JIAPAC), 13, 35-39. https://doi.org/10.1177/2325957413488168
[26]
(2016) Document de politique, normes et procédures des services de dépistage du VIH en Côte d’Ivoire. https://www.pnlsci.com/wp-content/uploads/2022/02/directives-2016-depistage-vih.pdf
[27]
Ahadri, N. (2012) Le transport des échantillons biologiques. Option/Bio, 23, 19-22. https://doi.org/10.1016/s0992-5945(12)70991-1
[28]
Alizadeh, M., Picard, C., Frassati, C., Walencik, A., Gauthier, A.C., Bennasar, F., et al. (2020) A New Set of Reagents and Related Software Used for NGS Based Classical and Non-Classical HLA Typing Showing Evidence for a Greater HLA Haplotype Diversity. HumanImmunology, 81, 202-205. https://doi.org/10.1016/j.humimm.2020.02.003
[29]
(2024) IPD-IMGT/HLA Data Base. https://www.ebi.ac.uk/ipd/imgt/hla/alleles/
[30]
Angulo, J.M.C., Cuesta, T.A.C., Menezes, E.P., Pedroso, C. and Brites, C. (2019) A Systematic Review on the Influence of HLA-B Polymorphisms on HIV-1 Mother-to-Child-Transmission. TheBrazilianJournalofInfectiousDiseases, 23, 53-59. https://doi.org/10.1016/j.bjid.2018.12.002
[31]
Nii-Trebi, N.I., Matsuoka, S., Kawana-Tachikawa, A., Bonney, E.Y., Abana, C.Z., Ofori, S.B., et al. (2022) Super High-Resolution Single-Molecule Sequence-Based Typing of HLA Class I Alleles in HIV-1 Infected Individuals in Ghana. PLOSONE, 17, e0269390. https://doi.org/10.1371/journal.pone.0269390
[32]
Sanchez-Mazas, A., Černý, V., Di, D., Buhler, S., Podgorná, E., Chevallier, E., et al. (2017) The HLA-B Landscape of Africa: Signatures of Pathogen-Driven Selection and Molecular Identification of Candidate Alleles to Malaria Protection. MolecularEcology, 26, 6238-6252. https://doi.org/10.1111/mec.14366
[33]
Cargou, M., Ralazamahaleo, M., Blouin, L., Guidicelli, G. and Visentin, J. (2018) Characterization of the Novel HLA-DPA1*02:12 Allele by Sequencing-Based Typing. HLA, 93, 61-62. https://doi.org/10.1111/tan.13418
[34]
Sherrill, J.B., Cereb, N. and Ho, C. (2019) Identification of a Novel Allele, HLA-DPB1*417: 01: 02, in an African American Deceased Donor. HLA, 94, 88-88. https://doi.org/10.1111/tan.13526
[35]
(2024) La base de données Allele Frequency Net [Rechercher les fréquences des allèles HLA]. https://www.allelefrequencies.net/hla6006a.asp
[36]
Hill, A.V., Allsopp, C.E., Kwiatkowski, D., Taylor, T.E., Yates, S.N., Anstey, N.M., et al. (1992) Extensive Genetic Diversity in the HLA Class II Region of Africans, with a Focally Predominant Allele, DRB1*1304. Proceedings of the National Academy of Sciences of the United States of America, 89, 2277-2281. https://doi.org/10.1073/pnas.89.6.2277
[37]
Peterson, T.A., Bielawny, T., Lacap, P., Hardie, R., Daniuk, C., Mendoza, L., et al. (2014) Diversity and Frequencies of HLA Class I and Class II Genes of an East African Population. OpenJournalofGenetics, 4, 99-124. https://doi.org/10.4236/ojgen.2014.42013
[38]
Tshabalala, M., Mellet, J., Vather, K., Nelson, D., Mohamed, F., Christoffels, A., et al. (2022) High Resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1, and ∼DQB1 Diversity in South African Populations. FrontiersinGenetics, 13, Article 711944. https://doi.org/10.3389/fgene.2022.711944
[39]
Cao, K., Moormann, A.M., Lyke, K.E., Masaberg, C., Sumba, O.P., Doumbo, O.K., et al. (2004) Differentiation between African Populations Is Evidenced by the Diversity of Alleles and Haplotypes of HLA Class I Loci. TissueAntigens, 63, 293-325. https://doi.org/10.1111/j.0001-2815.2004.00192.x
[40]
Le, W., Shi, J., Zhang, T., Liu, L., Qin, H., Liang, S., et al. (2016) HLA-DRB1*15: 01 and HLA-DRB3*02: 02 in PLA2R-Related Membranous Nephropathy. JournaloftheAmericanSocietyofNephrology, 28, 1642-1650. https://doi.org/10.1681/asn.2016060644
[41]
Goulder, P.J.R. and Watkins, D.I. (2008) Impact of MHC Class I Diversity on Immune Control of Immunodeficiency Virus Replication. NatureReviewsImmunology, 8, 619-630. https://doi.org/10.1038/nri2357
[42]
Luo, M., Daniuk, C.A., Diallo, T.O., Capina, R.E., Kimani, J., Wachihi, C., et al. (2012) For Protection from HIV-1 Infection, More Might Not Be Better: A Systematic Analysis of HIV Gag Epitopes of Two Alleles Associated with Different Outcomes of HIV-1 Infection. JournalofVirology, 86, 1166-1180. https://doi.org/10.1128/jvi.05721-11
[43]
Lobos, C.A., Downing, J., D’Orsogna, L.J., Chatzileontiadou, D.S.M. and Gras, S. (2022) Protective HLA-B57: T Cell and Natural Killer Cell Recognition in HIV Infection. BiochemicalSocietyTransactions, 50, 1329-1339. https://doi.org/10.1042/bst20220244
[44]
Trachtenberg, E.A. and Erlich, H.A. (2001) A Review of the Role of the Human Leukocyte Antigen (HLA) System as a Host Immunogenetic Factor Influencing HIV Transmission and Progression to AIDS. HIV Molecular Immunology, 1, 43-60. https://hfv.lanl.gov/content/immunology/pdf/2001/1/4-trachtenburg.pdf
[45]
Julg, B., Moodley, E.S., Qi, Y., Ramduth, D., Reddy, S., Mncube, Z., et al. (2011) Possession of HLA Class II DRB1*1303 Associates with Reduced Viral Loads in Chronic HIV-1 Clade C and B Infection. TheJournalofInfectiousDiseases, 203, 803-809. https://doi.org/10.1093/infdis/jiq122
[46]
Sidney, J., Peters, B., Frahm, N., Brander, C. and Sette, A. (2008) HLA Class I Supertypes: A Revised and Updated Classification. BMCImmunology, 9, Article No. 1. https://doi.org/10.1186/1471-2172-9-1
[47]
Ou, G., Liu, X. and Jiang, Y. (2021) HLA-DPB1 Alleles in Hepatitis B Vaccine Response. Medicine, 100, e24904. https://doi.org/10.1097/md.0000000000024904
[48]
Bettencourt, A., Carvalho, C., Leal, B., Brás, S., Lopes, D., Martins da Silva, A., et al. (2015) The Protective Role of HLA-DRB113 in Autoimmune Diseases. JournalofImmunologyResearch, 2015, Article ID: 948723. https://doi.org/10.1155/2015/948723