全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

支撑剂回流控制方法及现场应用
Proppant Backflow Control Method and Field Application

DOI: 10.12677/me.2025.131008, PP. 53-64

Keywords: 支撑剂回流,临界返排速度,包胶支撑剂,纤维拌注,杆状支撑剂
Proppant Backflow
, Critical Flowback Velocity, Coated Proppant, Fiber Mixing, Rod Proppant

Full-Text   Cite this paper   Add to My Lib

Abstract:

水力压裂技术的面世使得油气井的产能得到了显著提升,成为非常规油气资源开发的重要手段。然而,在水力压裂措施实施的同时会出现支撑剂回流的现象,对措施后的测试以及生产造成影响,还可能削弱压裂措施的增产效果。本文介绍了影响支撑剂稳定性的因素,重点分析了造成支撑剂回流的原因,并综述了现有控制支撑剂回流的方法、原理以及现场应用情况。针对于不同的储层、地域情况应选择合理的控制回流方法以保证压裂后的增产。展望未来,压裂支撑剂的发展前景广阔,预计将朝向高性能、智能化、可降解及多功能的方向发展,同时也要注意到对环境带来的潜在影响,朝着更可持续的方向发展。
The advent of hydraulic fracturing technology has significantly increased the productivity of oil and gas wells and has become an important means to develop unconventional oil and gas resources. However, proppant backflow can occur during hydraulic fracturing, which can interfere with post-fracturing testing and production and can reduce the stimulation effectiveness of fracturing. In this paper, the factors affecting proppant stability are introduced, the reasons for proppant reflux are analyzed, and the existing methods, principles and field applications of proppant reflux control are reviewed. According to the different reservoir and regional conditions, we should choose reasonable reflux control methods to ensure the production increase after fracturing. Looking ahead, the development of fracturing proppants is promising and is expected to move towards high performance, intelligent, degradable and versatile, while also taking into account the potential impact on the environment and moving towards a more sustainable direction.

References

[1]  李天才, 郭建春, 赵金洲. 压裂气井支撑剂回流及出砂控制研究及其应用[J]. 西安石油大学学报(自然科学版), 2006(3): 44-47, 115-116.
[2]  Milton-Tayler, D., Stephenson, C. and Asgian, M.I. (1992) Factors Affecting the Stability of Proppant in Propped Fractures: Results of a Laboratory Study. SPE Annual Technical Conference and Exhibition, Washington DC, 4-7 October 1992, SPE-24821-MS.
https://doi.org/10.2118/24821-ms
[3]  何世云, 陈琛. 加砂压裂压后排液的控砂技术[J]. 天然气工业, 2002(3): 45-46.
[4]  杨晓鹏, 曾芮. 高速通道压裂技术机理研究与应用[J]. 广东石油化工学院学报, 2015, 25(1): 8-13.
[5]  汪翔. 裂缝闭合过程中压裂液返排机理研究与返排控制[D]: [硕士学位论文]. 北京: 中国科学院研究生院, 2004.
[6]  程翊珊. 压裂后支撑剂回流机理及其影响研究[D]: [硕士学位论文]. 北京: 中国地质大学, 2021.
[7]  焦国盈, 王嘉淮, 潘竟军, 等. 压裂井支撑剂回流预测研究[J]. 海洋石油, 2007(4): 46-49.
[8]  Goel, N. and Shah, S. (1999) Experimental Investigation of Proppant Flowback Phenomena Using a Large Scale Fracturing Simulator. SPE Annual Technical Conference and Exhibition, Houston, 3-6 October 1999, SPE-56880-MS.
[9]  Sparlin, D.D. and Hagen, R.W. (1995) Proppant Selection for Fracturing and Sand Control. World Oil, 216, Article ID: 6635709.
[10]  Yew, C.H., Ma, M.J. and Hill, A.D. (2000) A Study of Fluid Leakoff in Hydraulic Fracture Propagation. Proceedings of International Oil and Gas Conference and Exhibition in China, Beijing, 7-10 November 2000, SPE-64786-MS.
https://doi.org/10.2523/64786-ms
[11]  宋军正 郭建春. 压裂气井出砂机理研究[J]. 钻采工艺, 2005(2): 20-21, 111-112.
[12]  徐庆祥, 王绍达, 张苏杰, 等. 油气井压裂后出砂原因分析及控制措施[J]. 中国石油和化工标准与质量, 2021, 41(19): 55-56, 61.
[13]  姜春河, 郎学军, 易明新, 等. 支撑剂回流控制技术研究与应用[J]. 钻采工艺, 2008(6): 151-153.
[14]  朱新春, 陈付虎, 李嘉瑞, 等. 大牛地气田生产中支撑剂回流机理及影响因素分析[J]. 油气藏评价与开发, 2015, 5(4): 73-76, 82.
[15]  Romero, J. and Feraud, J.P. (1996) Stability of Proppant Pack Reinforced with Fiber for Proppant Flowback Control. SPE Formation Damage Control Symposium, Lafayette, 14-15 February 1996, SPE-31093-MS.
https://doi.org/10.2118/31093-ms
[16]  殷洪川, 胥良君, 吕泽宇, 等. 页岩气井临界出砂产量预测方法[J]. 特种油气藏, 2023, 30(6): 135-140.
[17]  Robinson, B.M., Holditch, S.A. and Whitehead, W.S. (1988) Minimizing Damage to a Propped Fracture by Controlled Flowback Procedures. Journal of Petroleum Technology, 40, 753-759.
https://doi.org/10.2118/15250-pa
[18]  赖海涛, 梁凌云, 黄建宁. 气田防支撑剂回流压裂液快速返排的研究[J]. 石油化工应用, 2009, 28(7): 50-53, 60.
[19]  Ely, J.W. (1996) Experience Proves Forced Fracture Closure Works. World Oil, 217, Article ID: 175994.
[20]  李小龙, 肖雯, 刘晓强, 等. 压裂返排技术优化[J]. 断块油气田, 2015, 22(3): 402-404.
[21]  王雷, 文恒. 压裂液返排速度对支撑剂回流量影响实验研究[J]. 科学技术与工程, 2016, 16(26): 200-202, 206.
[22]  尹国君, 许庆双, 范传雷. 压裂液返排试验及返排制度优化研究[J]. 当代化工研究, 2016(10): 106-107.
[23]  曹广胜, 白玉杰, 杜童, 等. 基于有限元模拟的支撑剂回流规律[J]. 新疆石油地质, 2019, 40(2): 218-222.
[24]  张矿生, 陈宝春, 吴勇, 等. 压裂液返排冲刷支撑剂颗粒的DEM-CFD模拟研究[J]. 工程热物理学报, 2023, 44(4): 1009-1014.
[25]  于庆红, 王宏飞, 隋向云, 等. 树脂包覆支撑剂控制回流方法研究[J]. 石油钻采工艺, 2005(S1): 74-76, 97.
[26]  李怀文, 邵力飞, 曹庆平, 等. 大港油田多涂层预包防砂支撑剂研制与应用[J]. 石油钻探技术, 2011, 39(4): 99-102.
[27]  Lu, W., O’Neil, B., Zhang, K., Wang, C. and Quintero, H. (2016) Enhancing Proppant Flowback Control through Surface Treatment of Proppant. International Petroleum Technology Conference, Bangkok, 14-16 November 2016, IPTC-18796-MS.
https://doi.org/10.2523/18796-ms
[28]  陈应淋, 王金荣, 郑碧锁, 姚勇. 脲醛树酯溶液防砂工艺及应用[J]. 油气采收率技术, 1995(2): 73-79, 91.
[29]  文良凡, 邓静静. 覆膜砂压裂技术在油气开发中的应用及效果分析[J]. 石油工业技术监督, 2013, 29(11): 55-57.
[30]  商祥毅, 严锦根, 潘赳奔, 等. 适用于蒸汽吞吐井防砂的FSJ-V耐高温树脂涂敷砂[J]. 油田化学, 2002(2): 118-120.
[31]  高旺来, 接金利, 张为民. 一种树脂覆膜砂支撑剂的研究及现场应用[J]. 油田化学, 2006(1): 39-41.
[32]  张潇, 王占一, 吴峙颖, 等. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400.
[33]  周林刚. 纤维加砂压裂工艺研究及应用[J]. 西部探矿工程, 2010, 22(11): 92-95.
[34]  Bustos, O., Powell, A., Olsen, T., Kordziel, W. and Sobernheim, D. (2007) Fiber-Laden Fracturing Fluid Improves Production in the Bakken Shale Multi-Lateral Play. Proceedings of Rocky Mountain Oil & Gas Technology Symposium, Denver, 16-18 April 2007, SPE-107979-MS.
https://doi.org/10.2523/107979-ms
[35]  刘辉. 纤维在低渗透油藏压裂控砂中的应用试验[J]. 江汉石油职工大学学报, 2021, 34(4): 24-6.
[36]  刘伟, 张静, 李军, 等. 控制水力压裂支撑剂返排的玻璃短切纤维增强技术[J]. 石油钻采工艺, 1997(4): 77-80, 109.
[37]  刁素, 任山, 黄禹忠, 等. 压裂井高效返排技术在川西地区的先导性试验[J]. 天然气工业, 2008(9): 89-91, 142.
[38]  黄禹忠, 任山, 兰芳, 等. 纤维网络加砂压裂工艺技术先导性试验[J]. 钻采工艺, 2008(1): 77-78, 89, 154-155.
[39]  任山, 向丽, 黄禹忠, 等. 纤维网络加砂压裂技术研究及其在川西低渗透致密气藏的应用[J]. 油气地质与采收率, 2010, 17(5): 86-89, 117.
[40]  胡阳明, 赵振峰, 李宪文, 等. 榆林储气库高气量纤维网络抗支撑剂回流实验[J]. 断块油气田, 2021, 28(6): 786-791.
[41]  Howard, P.R., King, M.T., Morris, M., Féraud, J., Slusher, G. and Lipari, S. (1995) Fiber/Proppant Mixtures Control Proppant Flowback in South Texas. SPE Annual Technical Conference and Exhibition, Dallas, 22-25 October 1995, SPE-30495-MS.
https://doi.org/10.2118/30495-ms
[42]  张绍彬, 谭明文, 张朝举, 等. 实现快速排液的纤维增强压裂工艺现场应用研究[J]. 天然气工业, 2005(11): 53-55, 150.
[43]  刘琦, 刘淼, 李存荣, 等. 海拉尔油田混注纤维压裂技术[J]. 特种油气藏, 2009, 16(6): 74-76, 81, 99.
[44]  任斌, 刘国良, 张冕, 等. 苏里格气田加纤维压裂技术的应用研究[J]. 西南石油大学学报(自然科学版), 2014, 36(1): 121-128.
[45]  章敬, 李佳琦, 蔡贤平, 等. 纤维混注加砂压裂工艺在克拉玛依油田的应用[J]. 新疆石油地质, 2013, 34(5): 560-562.
[46]  桂阳, 陈恒, 曹阳. 纤维加砂压裂在靖边气田水平井的应用[J]. 现代盐化工, 2017, 44(4): 21-24.
[47]  景帅, 李昌盛, 付宣, 等. 稠油纤维防砂工艺技术的研究与应用[J]. 钻采工艺, 2021, 44(6): 139-142.
[48]  Edelman, J., Maghrabia, K., Semary, M., Mathur, A., Zaki, A.S. and Bernechea, J.M. (2013) Rod-Shaped Proppant Provides Superior Proppant Flowback Control in the Egyptian Eastern Desert. SPE Unconventional Gas Conference and Exhibition, Muscat, 28-30 January 2013, SPE-164014-MS.
https://doi.org/10.2118/164014-ms
[49]  Valiullin, A., Makienko, V., Overin, A., Yudin, A. and Gromovenko, A. (2015) The First Experience of Rod-Shaped Proppant Implementation in Western Siberia Oil Fields (Russian). SPE Russian Petroleum Technology Conference, Moscow, 26-28 October 2015, SPE-176540-MS.
https://doi.org/10.2118/176540-ru
[50]  Soetikno, L., Artola, P.D. and Guimaraes, C. (2014) Novel Rod-Shaped Proppant Fracturing Boosts Production and Adds Recoverable Reserves in Indonesia during Hydraulic Fracturing Field Revival Campaign. International Petroleum Technology Conference, Kuala Lumpur, 10-12 December 2014, IPTC-18086-MS.
https://doi.org/10.2523/18086-ms
[51]  牟绍艳, 姜勇. 压裂用支撑剂的现状与展望[J]. 工程科学学报, 2016, 38(12): 1659-1666.
[52]  郑平, 邹一锋. 水平井纤维伴注加砂压裂工艺应用[J]. 新疆石油天然气, 2013, 9(1): 67-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133