|
基于CNN-LSTM-Attention模型的新能源发电量预测与孤立森林算法的风险检测分析
|
Abstract:
文章主要探讨了一种将卷积神经网络、长短时记忆网络以及注意力机制相结合的方法在新能源发电量预测中的应用及其有效性。随着新能源发电量受外部环境影响而表现出较大波动性和复杂性,传统预测模型难以全面捕捉其中的复杂模式和长期依赖性。因此,文章提出了一个集成多种深度学习方法的组合模型(CNN-LSTM-Attention模型),该模型首先通过卷积层提取数据中的局部特征,随后利用长短时记忆网络建模时间序列的长期依赖关系,最后通过注意力机制增强对重要信息的关注度。实验选取了2024年1月1日至6月30日期间的甘肃省风力发电和水力发电数据,进行了特征提取和模型训练。结果显示,相较于单独使用卷积神经网络或长短时记忆网络,结合了注意力机制的组合模型在多个评估指标上均表现出更高的预测准确性和更好的拟合效果。此外,还引入了孤立森林算法对预测误差进行异常值检测,并结合风险等级进行了详细的分类分析,进一步验证了该模型在实际应用中的有效性。本研究为新能源发电系统的预测和管理提供了一种新思路和方法,有助于提高系统运行的可靠性和安全性。
This paper mainly discusses the application and effectiveness of a method combining convolutional neural networks, long short-term memory networks, and attention mechanisms in new energy power generation predictions. As new energy generation is affected by the external environment and shows great volatility and complexity, it is difficult to fully capture complex patterns and long-term dependencies using traditional forecasting models. Therefore, this paper proposes a combined model integrating multiple deep learning methods (CNN-LSTM-Attention model), which firstly extracts local features from the data through convolutional layers, then models the long-term dependencies of time series by long short-term memory networks and finally enhances the focus on important information through attention mechanisms. The experiment selected the wind power and hydroelectric power generation data of Gansu Province from January 1 to June 30, 2024, and carried out feature extraction and model training. The results show that compared with convolutional neural networks or long short-term memory networks alone, the combined model with attention mechanism has higher prediction accuracy and better fitting effect on multiple evaluation indicators. In addition, this paper introduces the isolation forest algorithm for outlier detection of the prediction errors and carries out a detailed classification analysis combined with the risk level, further verifying the effectiveness of the model in practical application. The research in this paper provides a new idea and method for the prediction and management of a new energy power generation system, which is helpful in improving the reliability and safety of the whole system operation.
[1] | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. |
[2] | 郭军红, 王小萱, 汪月新, 等. Copula分位数回归方法在风电超短期出力预测上的应用[J]. 工程科学学报, 2024, 46(10): 1921-1929. |
[3] | 赵勇. 基于机器学习的风力发电现场异常检测的应用研究[J]. 价值工程, 2024, 43(23): 120-123. |
[4] | Shen, H., Zhang, H., Xu, Y., Chen, H., Zhang, Z., Li, W., et al. (2024) Two Stage Robust Economic Dispatching of Microgrid Considering Uncertainty of Wind, Solar and Electricity Load along with Carbon Emission Predicted by Neural Network Model. Energy, 300, Article ID: 131571. https://doi.org/10.1016/j.energy.2024.131571 |
[5] | Yang, H. and Schell, K.R. (2021) Real-Time Electricity Price Forecasting of Wind Farms with Deep Neural Network Transfer Learning and Hybrid Datasets. Applied Energy, 299, Article ID: 117242. https://doi.org/10.1016/j.apenergy.2021.117242 |
[6] | Du, X., Lang, Z., Liu, M. and Wu, J. (2024) Regression Analysis and Prediction of Monthly Wind and Solar Power Generation in China. Energy Reports, 12, 1385-1402. https://doi.org/10.1016/j.egyr.2024.07.027 |
[7] | Bilgili, M. and Pinar, E. (2023) Gross Electricity Consumption Forecasting Using LSTM and SARIMA Approaches: A Case Study of Türkiye. Energy, 284, Article ID: 128575. https://doi.org/10.1016/j.energy.2023.128575 |
[8] | 张华强. 基于时间序列的深度学习光伏发电模型研究[J]. 中国高新科技, 2024(6): 86-87+110. |
[9] | 汪鼎皓. 基于长短时记忆神经网络的风功率预测方法研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2023. |
[10] | Eldali, F.A., Hansen, T.M., Suryanarayanan, S. and Chong, E.K.P. (2016) Employing ARIMA Models to Improve Wind Power Forecasts: A Case Study in ERCOT. 2016 North American Power Symposium (NAPS), Denver, 18-20 September 2016, 1-6. https://doi.org/10.1109/naps.2016.7747861 |
[11] | Malakouti, S.M., Karimi, F., Abdollahi, H., Menhaj, M.B., Suratgar, A.A. and Moradi, M.H. (2024) Advanced Techniques for Wind Energy Production Forecasting: Leveraging Multi-Layer Perceptron + Bayesian Optimization, Ensemble Learning, and CNN-LSTM Models. Case Studies in Chemical and Environmental Engineering, 10, Article ID: 100881. https://doi.org/10.1016/j.cscee.2024.100881 |
[12] | Zhang, S., Chen, R., Cao, J. and Tan, J. (2023) A CNN and LSTM-Based Multi-Task Learning Architecture for Short and Medium-Term Electricity Load Forecasting. Electric Power Systems Research, 222, Article ID: 109507. https://doi.org/10.1016/j.epsr.2023.109507 |
[13] | Agga, F.A., Abbou, S.A., Houm, Y.E. and Labbadi, M. (2022) Short-Term Load Forecasting Based on CNN and LSTM Deep Neural Networks. IFAC-PapersOnLine, 55, 777-781. https://doi.org/10.1016/j.ifacol.2022.07.407 |
[14] | Agga, A., Abbou, A., Labbadi, M. and El Houm, Y. (2021) Short-Term Self Consumption PV Plant Power Production Forecasts Based on Hybrid CNN-LSTM, Convlstm Models. Renewable Energy, 177, 101-112. https://doi.org/10.1016/j.renene.2021.05.095 |
[15] | Ghimire, S., Deo, R.C., Casillas-Pérez, D., Salcedo-Sanz, S., Sharma, E. and Ali, M. (2022) Deep Learning CNN-LSTM-MLP Hybrid Fusion Model for Feature Optimizations and Daily Solar Radiation Prediction. Measurement, 202, Article ID: 111759. https://doi.org/10.1016/j.measurement.2022.111759 |
[16] | 马良玉, 吕若萌. 用SSA优化CNN-LSTM-SEnet预测模型实现风电机组故障预警[J]. 电力科学与工程, 2024, 40(6): 1-10. |
[17] | Sun, Y., Zhou, Q., Sun, L., Sun, L., Kang, J. and Li, H. (2024) CNN-LSTM-AM: A Power Prediction Model for Offshore Wind Turbines. Ocean Engineering, 301, Article ID: 117598. https://doi.org/10.1016/j.oceaneng.2024.117598 |
[18] | Ma, Z. and Mei, G. (2022) A Hybrid Attention-Based Deep Learning Approach for Wind Power Prediction. Applied Energy, 323, Article ID: 119608. https://doi.org/10.1016/j.apenergy.2022.119608 |
[19] | Du, J., Zheng, J., Liang, Y., Liao, Q., Wang, B., Sun, X., et al. (2023) A Theory-Guided Deep-Learning Method for Predicting Power Generation of Multi-Region Photovoltaic Plants. Engineering Applications of Artificial Intelligence, 118, Article ID: 105647. https://doi.org/10.1016/j.engappai.2022.105647 |
[20] | Xu, H., Hu, F., Liang, X., Zhao, G. and Abugunmi, M. (2024) A Framework for Electricity Load Forecasting Based on Attention Mechanism Time Series Depthwise Separable Convolutional Neural Network. Energy, 299, Article ID: 131258. https://doi.org/10.1016/j.energy.2024.131258 |