全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进趋近律和扰动观测器的PMSM滑模控制
Sliding Mode Control of Permanent Magnet Synchronous Motors Based on Improved Reaching Law and Disturbance Observer

DOI: 10.12677/mos.2025.141026, PP. 267-278

Keywords: 永磁同步电机,滑模控制,自适应趋近律,扰动观测器
Permanent Magnet Synchronous Motor
, Sliding Mode Control, Adaptive Reaching Law, Disturbance Observer

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高永磁同步电机转速控制的响应性能及鲁棒性,同时解决传统滑模控制中趋近模态存在的趋近时间和系统抖震幅值之间的固有矛盾,提出了一种基于改进自适应趋近律和扰动观测器的滑模控制方法。设计一种改进自适应趋近律,引入复合函数项并结合积分滑模面构造速度环滑模控制器。同时设计积分终端滑模扰动观测器,用于实时监测系统内部参数的变化及外部扰动,并将估计值前馈补偿给滑模控制器以抑制扰动的影响。仿真实验表明,提出的滑模控制方法有效提高了响应速度,突增负载时,转速波动小,恢复时间短。结果表明提出的滑模控制方法,可以有效改善永磁同步电机转速控制的动态性能,提高鲁棒性,抑制抖震现象,为实现高精度稳定的速度控制提供了切实可行的方案。
In order to enhance the response performance and robustness of the speed control for permanent magnet synchronous motor (PMSM), and to address the inherent contradiction between the approach time and the system’s oscillation amplitude in the sliding mode control, an improved sliding mode control method based on an adaptive approach law and a disturbance observer has been proposed. This method introduces a composite function item and combines it with an integral sliding surface to construct a sliding mode controller for the speed loop. Additionally, an integral terminal sliding mode disturbance observer is designed to monitor the changes in internal parameters and external disturbances in real-time, and the estimated values are used to compensate the sliding mode controller to suppress the effects of disturbances. Simulation experiments have shown that the proposed sliding mode control method effectively improves the response speed, with minimal speed fluctuations and short recovery times when sudden loads are applied. The results indicate that the proposed sliding mode control method can significantly improve the dynamic performance of PMSM speed control, enhance robustness, suppress oscillation phenomena, and provide a feasible solution for achieving high-precision and stable speed control.

References

[1]  Xu, W., Junejo, A.K., Liu, Y. and Islam, M.R. (2019) Improved Continuous Fast Terminal Sliding Mode Control with Extended State Observer for Speed Regulation of PMSM Drive System. IEEE Transactions on Vehicular Technology, 68, 10465-10476.
https://doi.org/10.1109/tvt.2019.2926316
[2]  Zhang, X., Sun, L., Zhao, K. and Sun, L. (2013) Nonlinear Speed Control for PMSM System Using Sliding-Mode Control and Disturbance Compensation Techniques. IEEE Transactions on Power Electronics, 28, 1358-1365.
https://doi.org/10.1109/tpel.2012.2206610
[3]  Xu, W., Junejo, A.K., Liu, Y., Hussien, M.G. and Zhu, J. (2021) An Efficient Antidisturbance Sliding-Mode Speed Control Method for PMSM Drive Systems. IEEE Transactions on Power Electronics, 36, 6879-6891.
https://doi.org/10.1109/tpel.2020.3039474
[4]  Qu, L., Qiao, W. and Qu, L. (2021) Active-Disturbance-Rejection-Based Sliding-Mode Current Control for Permanent-Magnet Synchronous Motors. IEEE Transactions on Power Electronics, 36, 751-760.
https://doi.org/10.1109/tpel.2020.3003666
[5]  Hou, H., Yu, X., Xu, L., Rsetam, K. and Cao, Z. (2020) Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems. IEEE Transactions on Industrial Electronics, 67, 5647-5656.
https://doi.org/10.1109/tie.2019.2931517
[6]  于艳君, 崔明恺, 陈叹辞, 等. 基于模糊自适应转速调节器的绕组切换型电机控制[J]. 中国电机工程学报, 2022, 42(23): 8708-8718.
[7]  刘金琨, 孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3): 407-418.
[8]  Teja, A.V.R., Chakraborty, C. and Pal, B.C. (2018) Disturbance Rejection Analysis and FPGA-Based Implementation of a Second-Order Sliding Mode Controller Fed Induction Motor Drive. IEEE Transactions on Energy Conversion, 33, 1453-1462.
https://doi.org/10.1109/tec.2018.2808325
[9]  Junejo, A.K., Xu, W., Mu, C., Ismail, M.M. and Liu, Y. (2020) Adaptive Speed Control of PMSM Drive System Based a New Sliding-Mode Reaching Law. IEEE Transactions on Power Electronics, 35, 12110-12121.
https://doi.org/10.1109/tpel.2020.2986893
[10]  Kuang, Z., Gao, H. and Tomizuka, M. (2020) Precise Linear-Motor Synchronization Control via Cross-Coupled Second-Order Discrete-Time Fractional-Order Sliding Mode. IEEE/ASME Transactions on Mechatronics, 36, 358-368.
https://doi.org/10.1109/tmech.2020.3019883
[11]  Fallaha, C.J., Saad, M., Kanaan, H.Y. and Al-Haddad, K. (2011) Sliding-Mode Robot Control with Exponential Reaching Law. IEEE Transactions on Industrial Electronics, 58, 600-610.
https://doi.org/10.1109/tie.2010.2045995
[12]  Guo, X., Huang, S., Lu, K., Peng, Y., Wang, H. and Yang, J. (2023) A Fast Sliding Mode Speed Controller for PMSM Based on New Compound Reaching Law with Improved Sliding Mode Observer. IEEE Transactions on Transportation Electrification, 9, 2955-2968.
https://doi.org/10.1109/tte.2022.3213562
[13]  Han, H., Wu, X. and Qiao, J. (2020) Design of Robust Sliding Mode Control with Adaptive Reaching Law. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50, 4415-4424.
https://doi.org/10.1109/tsmc.2018.2852626
[14]  Yu, X., Zhou, B., Xiong, L. and Jiang, S. (2023) Composite Sliding Mode Speed Control for Sinusoidal Doubly Salient Electromagnetic Machine Drives Using Fast Reaching Law and Disturbance Compensation. IEEE Transactions on Industrial Electronics, 70, 6563-6573.
https://doi.org/10.1109/tie.2022.3201307
[15]  Nguyen, T.H., Nguyen, T.T., Nguyen, V.Q., Le, K.M., Tran, H.N. and Jeon, J.W. (2022) An Adaptive Sliding-Mode Controller with a Modified Reduced-Order Proportional Integral Observer for Speed Regulation of a Permanent Magnet Synchronous Motor. IEEE Transactions on Industrial Electronics, 69, 7181-7191.
https://doi.org/10.1109/tie.2021.3102427
[16]  Xiong, J. and Fu, X. (2024) Extended Two-State Observer-Based Speed Control for PMSM with Uncertainties of Control Input Gain and Lumped Disturbance. IEEE Transactions on Industrial Electronics, 71, 6172-6182.
https://doi.org/10.1109/tie.2023.3292850
[17]  Qi, G., Hu, J., Li, L. and Li, K. (2024) Integral Compensation Function Observer and Its Application to Disturbance-Rejection Control of QUAV Attitude. IEEE Transactions on Cybernetics, 54, 4088-4099.
https://doi.org/10.1109/tcyb.2023.3344217

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133