全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁约束作用对三电极ESP除尘性能的影响
Influence of Magnetic Confinement Effect on Dust-Removal Performance of Triple Electrodes ESP

DOI: 10.12677/mos.2025.141024, PP. 240-250

Keywords: 磁约束,三电极ESP,PM2.5,除尘效率,烟气流速,工作电压
Magnetic Confinement Effect
, Triple Electrode ESP, PM2.5, Dust-Removal Efficiency, Flue Gas Velocity, Working Voltage

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高三电极静电除尘器(Electrostatic Precipitator, ESP)的除尘效率,本文在引入磁约束和建立多场耦合理论模型的基础上,采用FLUENT软件数值模拟磁约束作用下不同工作电压和烟气流速的PM2.5除尘效率,对比分析了不同磁场环境下三电极ESP对PM2.5的除尘效率。结果表明,随着磁场环境的增强,三电极ESP的除尘效率不断提高;引入磁约束作用后扩散荷电效应体现得相对较弱;磁约束作用在低工作电压和高烟气流速下对三电极ESP除尘性能的提升作用更大。研究结果可为新型线板式三电极ESP的性能提升和结构改造提供一定的参考价值。
To improve the dust-removal efficiency of triple electrode electrostatic precipitator (ESP), based on the introduction of magnetic confinement effect and the establishment of multi-field coupling theoretical model, this paper uses FLUENT software to numerically simulate the dust-removal efficiency of PM2.5 under magnetic confinement effect with different working voltages and flue gas velocity. The results show that with the enhancement of the magnetic field environment, the dust-removal efficiency of the triple electrode ESP is continuously improved, and the diffusion charging effect is relatively weak after the introduction of magnetic confinement effect. The magnetic confinement effect has a greater effect on the dust-removal performance of triple electrode ESP at lower working voltage and higher flue gas velocity. The research results can provide some reference value for the performance improvement and structural modification of the new wire-plate triple electrode ESP.

References

[1]  Hu, J., Zhou, R., Ding, R., Ye, D. and Su, Y. (2023) Effect of PM2.5 Air Pollution on the Global Burden of Lower Respiratory Infections, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Journal of Hazardous Materials, 459, Article ID: 132215.
https://doi.org/10.1016/j.jhazmat.2023.132215

[2]  Wang, J., Yan, Y., Si, H., Li, J., Zhao, Y., Gao, T., et al. (2023) The Effect of Real-Ambient PM2.5 Exposure on the Lung and Gut Microbiomes and the Regulation of Nrf2. Ecotoxicology and Environmental Safety, 254, Article ID: 114702.
https://doi.org/10.1016/j.ecoenv.2023.114702

[3]  Zhang, X., Ding, C. and Wang, G. (2024) An Autoregressive-Based Kalman Filter Approach for Daily PM2.5 Concentration Forecasting in Beijing, China. Big Data, 12, 19-29.
https://doi.org/10.1089/big.2022.0082

[4]  Wang, J., Zhang, H., Liu, Y., Li, Z. and Liu, Z. (2024) Unexpected PM2.5-Related Emissions and Accompanying Environmental-Economic Inequalities Driven by “Clean” Tertiary Industry in China. Science of the Total Environment, 919, Article ID: 170823.
https://doi.org/10.1016/j.scitotenv.2024.170823

[5]  Shakya, D., Deshpande, V., Goyal, M.K. and Agarwal, M. (2023) PM2.5 Air Pollution Prediction through Deep Learning Using Meteorological, Vehicular, and Emission Data: A Case Study of New Delhi, India. Journal of Cleaner Production, 427, Article ID: 139278.
https://doi.org/10.1016/j.jclepro.2023.139278

[6]  Luo, Y., Wei, H. and Yang, K. (2024) The Impact of Biomass Burning Occurred in the Indo-China Peninsula on PM2.5 and Its Spatiotemporal Characteristics over Yunnan Province. Science of the Total Environment, 908, Article ID: 168185.
https://doi.org/10.1016/j.scitotenv.2023.168185

[7]  Ning, Z., Hao, T., Zhang, Z., Huang, R., Wang, Z., Jiang, L., et al. (2021) Electrohydrodynamic Flow and Its Impact on Particle Trajectories Inside Wet Electrostatic Precipitator: Experimental and Numerical Analysis. Environmental Engineering Science, 38, 513-525.
https://doi.org/10.1089/ees.2020.0151

[8]  Cid, N., Chapela, S., Gómez, M.Á. and Patiño, D. (2024) Growth Analysis of the Particle Layer in a Small-Scale ESP with Biomass Combustion. Journal of Electrostatics, 127, Article ID: 103881.
https://doi.org/10.1016/j.elstat.2023.103881
[9]  Sayed, A.M., Ahmad, A.M., Ward, S.A., Shaalan, E.M., Darwish, M.M.F., Lehtonen, M., et al. (2024) A New Approach for Accurate Prediction of Optimal Ion Mobility in Dust Loaded Electrostatic Precipitator Using FDM-FMG. Electric Power Systems Research, 229, Article ID: 110200.
https://doi.org/10.1016/j.epsr.2024.110200

[10]  Li, J., Duan, L., Chen, J., Li, D., Bao, S., Wang, Z., et al. (2023) Research of the Effect of Different Corrugated Dust Collection Plates on Particle Removal in Electrostatic Precipitators. Chemical Engineering Research and Design, 197, 323-333.
https://doi.org/10.1016/j.cherd.2023.07.006

[11]  Wen, T. and Su, J. (2020) Corona Discharge Characteristics of Cylindrical Electrodes in a Two-Stage Electrostatic Precipitator. Heliyon, 6, e03334.
https://doi.org/10.1016/j.heliyon.2020.e03334

[12]  Islamov, R.S. (2020) Analysis of the Dynamics of Dust Reentrainment with Simultaneous Electrostatic Deposition and without Any Deposition after a Jump of Airflow Velocity. Journal of Aerosol Science, 144, Article ID: 105533.
https://doi.org/10.1016/j.jaerosci.2020.105533

[13]  Cornette, J.F.P., Dyakov, I.V., Plissart, P., Bram, S. and Blondeau, J. (2024) In-Situ Evaluation of a Commercial Electrostatic Precipitator Integrated in a Small-Scale Wood Chip Boiler. Journal of Electrostatics, 128, Article ID: 103897.
https://doi.org/10.1016/j.elstat.2024.103897
[14]  Shi, Y., Fang, M., Wang, Q., Yan, K., Cen, J. and Luo, Z. (2023) Enhanced High-Temperature Particle Capture through an Electrostatic Precipitator with Assistant Electrodes. Separation and Purification Technology, 324, Article ID: 124550.
https://doi.org/10.1016/j.seppur.2023.124550

[15]  He, Z. and Dass, E.T.M. (2018) Correlation of Design Parameters with Performance for Electrostatic Precipitator. Part I. 3D Model Development and Validation. Applied Mathematical Modelling, 57, 633-655.
https://doi.org/10.1016/j.apm.2017.05.042

[16]  Gao, W., Wang, Y., Zhang, H., Guo, B., Zheng, C., Guo, J., et al. (2020) Numerical Simulation of Particle Migration in Electrostatic Precipitator with Different Electrode Configurations. Powder Technology, 361, 238-247.
https://doi.org/10.1016/j.powtec.2019.08.046

[17]  Song, Y., Zhang, Y., Zhu, W., Liu, Y., Long, W. and Vafai, K. (2023) Study on the Influence of Electrodes on the Collection Efficiency during the Treatment of Welding Fume in Electrostatic Precipitators. Journal of Electrostatics, 123, Article ID: 103808.
https://doi.org/10.1016/j.elstat.2023.103808

[18]  Lee, M., Kim, J., Biswas, P., Kim, S., Suh, Y.J., et al. (2016) Enhanced Collection Efficiency of Nanoparticles by Electrostatic Precipitator with Needle-Cylinder Configuration. Journal of Nanoscience and Nanotechnology, 16, 6884-6888.
https://doi.org/10.1166/jnn.2016.11322
[19]  Ekin, O. and Adamiak, K. (2023) Electric Field and EHD Flow in Longitudinal Wire-to-Plate DC and DBD Electrostatic Precipitators: A Numerical Study. Journal of Electrostatics, 124, Article ID: 103826.
https://doi.org/10.1016/j.elstat.2023.103826
[20]  Pan, X., Zhang, Z., Cui, L. and Ma, C. (2022) The Distribution and Movement Characteristics of Fine Particles in an Electrostatic Precipitator with Multi-Field Synergy. Powder Technology, 410, Article ID: 117893.
https://doi.org/10.1016/j.powtec.2022.117893

[21]  Du, J., Shang, X., Shi, J. and Guan, Y. (2022) Removal of Chromium from Industrial Wastewater by Magnetic Flocculation Treatment: Experimental Studies and PSO-BP Modelling. Journal of Water Process Engineering, 47, Article ID: 102822.
https://doi.org/10.1016/j.jwpe.2022.102822
[22]  Lv, M., Li, D., Zhang, Z., Logan, B.E., Peter van der Hoek, J., Sun, M., et al. (2021) Magnetic Seeding Coagulation: Effect of Al Species and Magnetic Particles on Coagulation Efficiency, Residual Al, and Floc Properties. Chemosphere, 268, Article ID: 129363.
https://doi.org/10.1016/j.chemosphere.2020.129363

[23]  Suresh, V., Liu, Z., Perry, Z. and Gopalakrishnan, R. (2022) Modeling Particle-Particle Binary Coagulation Rate Constants for Spherical Aerosol Particles at High Volume Fractions Using Langevin Dynamics Simulations. Journal of Aerosol Science, 164, Article ID: 106001.
https://doi.org/10.1016/j.jaerosci.2022.106001

[24]  Jia, Y., Yang, Z., Bu, S. and Xu, W. (2024) Experimental Investigation on the Agglomeration Performance of Pre-Charged Micro-Nano Particles in Uniform Magnetic Field. Chemical Engineering Research and Design, 201, 523-533.
https://doi.org/10.1016/j.cherd.2023.12.009

[25]  Chen, Y. and Nan, J. (2024) Magnetic Nanoparticle Loading and Application of Weak Magnetic Field to Reconstruct the Cake Layer of Coagulation-Ultrafiltration Process to Achieve Efficient Antifouling: Performance and Mechanism Analysis. Water Research, 254, Article ID: 121435.
https://doi.org/10.1016/j.watres.2024.121435

[26]  Zhang, J., Gong, Z., Wu, J., Wu, H. and Pan, W. (2018) An Improved Modeling for Prediction of PM2.5 Collection Efficiency in Electrostatic Precipitators. Environmental Engineering and Management Journal, 17, 631-640.
https://doi.org/10.30638/eemj.2018.064

[27]  Zhang, J., Chen, D. and Zha, Z. (2020) Theoretical and Experimental Study of Trapping PM2.5 Particles via Magnetic Confinement Effect in a Multi-Electric Field Esp. Powder Technology, 368, 70-79.
https://doi.org/10.1016/j.powtec.2020.04.025
[28]  Arif, S., Branken, D.J., Everson, R.C., Neomagus, H.W.J.P. and Arif, A. (2018) The Influence of Design Parameters on the Occurrence of Shielding in Multi-Electrode Esps and Its Effect on Performance. Journal of Electrostatics, 93, 17-30.
https://doi.org/10.1016/j.elstat.2018.03.001

[29]  Moayedi, H., Amanifard, N., Deylami, H.M. and Dolati, F. (2017) Numerical Investigation of Using Micropolar Fluid Model for EHD Flow through a Smooth Channel. Journal of Electrostatics, 87, 51-63.
https://doi.org/10.1016/j.elstat.2017.03.006
[30]  郝文阁, 裴莹莹, 侯亚平, 等. ESP电场粉尘非稳态收集过程数值仿真[J]. 东北大学学报(自然科学版), 2008, 29(8): 1179-1182.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133