全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压力容器开孔接管应力类别的解读及应用
Interpretation and Application of Stress Type in Opening Nozzles of Pressure Vessels

DOI: 10.12677/mos.2025.141019, PP. 187-198

Keywords: 弯曲应力,接管应力分类,弹性分析法,极限载荷分析,有限元分析
Bending Stress
, Stress Classification in Nozzles, Elastic Analysis, Limit Load Analysis, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

接管是将压力容器与管道连接的一个必不可少的构件。由于涉及介质压力、接管上的外载荷、管系热胀推力及热载荷,在容器开孔接管处的应力分析较为复杂。在补强范围内,关于弯曲应力的类别和评定限值一直以来都存在争议;在补强范围外,2023版ASME VIII-2与我国新标准GB/T 4732-2024关于由外部弯矩引起的整体弯曲应力沿接管厚度的平均值(不包括相连管系自由端位移约束引起的)是划分为一次局部薄膜应力PL还是一次总体薄膜应力Pm同样也存在差异。因此,对于补强区内的弯曲应力,本文从理论和有限元结果两方面进行论证,建议将弯曲应力归为一次应力,一次薄膜加弯曲应力的许用限值取SIII = 2.2S。对于补强区外由外部弯矩引起的整体弯曲应力沿接管厚度的平均值(不包括相连管系自由端位移约束引起的),以压力容器中典型的带接管的筒体为例,采用弹性分析方法和极限载荷分析方法进行对比。结果表明,外部弯矩同样会引起一次总体薄膜应力Pm,若认为只引起一次局部薄膜应力PL是不安全的。
Nozzles are an essential component for connecting pressure vessels and pipelines. Stress analysis in opening nozzles of pressure vessels is complex due to the medium pressure, external loads on nozzles, thermal expansion thrusts of piping system and thermal loads. The type and assessment limits of bending stress have always been controversial within the limits of reinforcement. Outside the limits of reinforcement, there is also a difference between the 2023 edition of ASME VIII-2 and GB/T 4732-2024 regarding the holistic bending stress averaged through nozzle thickness caused by external moments (excluding those attributable to restrained free end displacements of attached piping) should be classified as primary local membrane stress PL or primary general membrane stress Pm. Therefore, the paper presents demonstrations from both theoretical and finite element analysis results for the bending stress within the limits of reinforcement. It is recommended to classify the bending stress as primary stress, and the allowable limit of primary membrane plus bending stress is taken as SIII = 2.2S. For the holistic bending stress averaged through nozzle thickness (excluding those attributable to restrained free end displacements of attached piping) caused by external moments outside the reinforcement, the typical cylinder with a nozzle in the pressure vessels is taken as an example. Then the elastic analysis and limit load analysis are carried out for comparison. The results show that external moments can also induce the primary general membrane stress Pm, it is unsafe to assume that only primary local membrane stress PL is caused.

References

[1]  Hardenbergh, D.E. (1961) Stresses at Nozzle Connections of Pressure Vessels: The Techniques and Methods Used in Analyzing Three Insert-Type Nozzles When Loaded by Internal Pressure Are Reported and Discussed. Experimental Mechanics, 1, 152-158.
https://doi.org/10.1007/bf02327586
[2]  吴本华, 桑芝富. 接管弯矩作用下容器开孔结构弹性应力研究[J]. 石油化工设备, 2005, 34(1): 1-4.
[3]  George, S.V.P., Seipp, T.G. and Morrison, S.W. (2004) Classification of Thermal Piping Loads Using Limit Load Analysis. ASME/JSME 2004 Pressure Vessels and Piping Conference, San Diego, 25-29 July 2004, 187-191.
https://doi.org/10.1115/pvp2004-2613
[4]  Seipp, T.G., George, S.V.P. and Morrison, S.W. (2005). Classification of Shell Stresses Resulting from Piping Nozzle Loads. ASME 2005 Pressure Vessels and Piping Conference, Denver, 17-51 July 2005, 451-454.
https://doi.org/10.1115/pvp2005-71535
[5]  Skopinsky, V.N. and Smetankin, A.B. (2006) Modeling and Stress Analysis of Nozzle Connections in Ellipsoidal Heads of Pressure Vessels under External Loading. Applied Mechanics and Engineering, 11, 965-979.
[6]  唐清辉, 李磊, 桑芝富. 组合载荷作用下开孔接管结构强度性能的研究[J]. 机械强度, 2010, 32(5): 766-773.
[7]  Prueter, P.E. and Brown, R.G. (2015) A Comparison of Design by Analysis Techniques for Evaluating Nozzle-To-Shell Junctions per ASME Section VIII Division 2. ASME 2015 Pressure Vessels and Piping Conference, Boston, 19-23 July 2015, PVP2015-45408.
https://doi.org/10.1115/pvp2015-45408
[8]  曹丽琴, 张红升, 李岩彬. 内压和外载荷作用下接管和管道连接部位的应力评定[J]. 压力容器, 2021, 38(1): 55-60.
[9]  刘哲, 张巨伟. 壳体开孔接管结构在联合载荷下新强度校核方法[J]. 制造业自动化, 2022, 44(11): 88-92.
[10]  王战辉, 马向荣, 范晓勇, 等. 压力容器球壳不连续区域应力分析和强度评定[J]. 化学工业与工程技术, 2019, 40(3): 64-67.
[11]  林玉娟, 程东红, 张浩. 加氢反应器接管补强部位的应力分析[J]. 东北林业大学学报, 2006, 34(4): 83-84, 94.
[12]  郑贤中, 付杰, 刘根战, 等. 反应釜多接管封头有限元分析[J]. 机械工程与自动化, 2021(6): 63-65.
[13]  赵晓凤, 钱才富, 吴志伟. 带切向接管内压圆筒的极限承载能力计算[J]. 压力容器, 2024, 41(2): 49-57.
[14]  赵春晓. 压力容器中应力分类方法的几点讨论与思考[J]. 化工与医药工程, 2017, 38(4): 42-45.
[15]  ASME-Ⅷ-1-2004: Rules for Construction of Pressure Vessels Alternative Rules. 2004. New York, ASME.
[16]  ASME Boiler & Pressure Vessel Code, VIII Division 2, Alternative Rules, Rules for Construction of Pressure Vessels. 2023. New York, ASME
[17]  中国标准出版社. GB/T 4732-2024压力容器分析设计[S]. 北京: 中国计量出版社, 2024.
[18]  陆明万, 陈勇, 李建国. 分析设计中应力分类的一次结构法[J]. 核动力工程, 1998(4): 43-51.
[19]  陆明万, 桑如苞, 丁利伟, 等. 压力容器圆筒大开孔补强计算方法[J]. 压力容器, 2009, 26(3): 10-15.
[20]  陆明万, 沈鋆, 王汉奎. 压力容器分析设计理论和释义[M]. 北京: 清华大学出版社, 2024.
[21]  左安达. 圆柱壳大开孔接管连接处弯曲应力性质和评定准则的探讨及论证[J]. 化工设备与管道, 2022, 59(1): 1-7.
[22]  桑如苞, 元少昀, 王小敏. 压力容器圆筒大开孔应力分析设计中的弯曲应力[J]. 石油化工设备技术, 2009, 30(5): 16-19.
[23]  万里平, 黄勇力. 圆筒径向开孔接管边缘处一次应力控制值的探讨[J]. 石油化工设备技术, 2016, 37(2): 7-9.
[24]  丁伯民, 蔡仁良. 压力容器设计-原理及工程应用[M]. 北京: 中国石化出版社, 1992: 339-343.
[25]  沈鋆. 极限载荷分析法在压力容器分析设计中的应用[J]. 石油化工设备, 2011, 40(4): 35-38.
[26]  李亭. 压力容器接管应力分类及评定[J]. 东方电气评论, 2015, 29(4): 58-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133