|
77K微型气动斯特林制冷机的排出器设计分析
|
Abstract:
本文研究了77K微型气动斯特林制冷机的排出器设计,分析了排出器结构参数对制冷机性能的影响。通过建立一维数值模型,从能量损失的角度出发,详细分析了回热器参数对制冷效率和内部能量损失的影响。研究结果表明,排出器的设计和优化是提高斯特林制冷机效率和性能的关键因素之一。通过优化膨胀活塞参数和回热器直径,可以显著提高制冷机的制冷效率。此外,回热器长度的变化对制冷效率也有显著影响。通过数值仿真,确定了最优的回热器直径和长度,为微型气动斯特林制冷机的设计提供了理论依据和指导。
This paper investigates the design of the displacer in a 77K miniature pneumatic Stirling cryocooler, analyzing the impact of the displacer’s structural parameters on the performance of the cryocooler. By establishing a one-dimensional numerical model and focusing on energy losses, a detailed analysis of the impact of regenerator parameters on cooling efficiency and internal energy losses is conducted. The research results indicate that the design and optimization of the displacer are one of the key factors in improving the efficiency and performance of the Stirling cryocooler. By optimizing the expansion piston parameters and the diameter of the regenerator, the cooling efficiency of the cryocooler can be significantly improved. Additionally, changes in the length of the regenerator also have a significant impact on cooling efficiency. Through numerical simulation, the optimal diameter and length of the regenerator are determined, providing a theoretical basis and guidance for the design of miniature pneumatic Stirling cryocoolers.
[1] | 习中立, 陈军, 陈晓屏, 等. HOT器件用自由活塞斯特林制冷机研究进展[J]. 真空与低温, 2018, 24(3): 151-156. |
[2] | 刘洋. 航天直线斯特林制冷机驱动控制技术研究[D]: [硕士学位论文]. 西安: 西安工业大学, 2020. |
[3] | Breiter, R., Wendler, J., Lutz, H., Rutzinger, S., Ihle, T., Ziegler, J., et al. (2011) High Operating Temperature IR-Modules with Reduced Pitch for Swap Sensitive Applications. SPIE Proceedings, Prague, 28 September 2011, 342-349. https://doi.org/10.1117/12.884009 |
[4] | 赵文丽, 李昊岚, 孙皓, 等. HOT器件用旋转式斯特林制冷机研究进展[J]. 红外技术, 2023, 45(2): 195-201. |
[5] | Willems, D., de Veer, B., Arts, R., Mullié, J. and Bollens, P. (2020) High-Availability Single-Stage Stirling Coolers with High Power Density. IOP Conference Series: Materials Science and Engineering, 755, Article ID: 012044. https://doi.org/10.1088/1757-899x/755/1/012044 |
[6] | 姜昆, 罗高乔, 陈臣, 等. −80˚C斯特林制冷机回热器优化设计及试验研究[J]. 低温与超导, 2021, 49(6): 44-48. |
[7] | 丁旭鹏, 王晓涛, 张益炳, 等. 高温红外探测器用斯特林制冷机研究[J]. 工程热物理学报, 2024, 45(2): 378-386. |
[8] | 谢世纪, 巨永林. 液氮温区混合回热器斯特林制冷机数值模拟研究[J]. 低温与超导, 2024, 52(1): 1-7. |
[9] | 寇翠翠, 姜昆, 方露露, 等. 2W@40K单级斯特林制冷机性能优化试验研究[J]. 低温工程, 2022(6): 26-30. |
[10] | Bisht, A.S. and Kuzhiveli, B.T. (2019) Design and Development of Miniature Free Piston Free Displacer Dual Opposed Stirling Cryocooler. IOP Conference Series: Materials Science and Engineering, 502, Article ID: 012045. https://doi.org/10.1088/1757-899x/502/1/012045 |
[11] | 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2010. |
[12] | 崔运浩, 王晓涛, 王亚男, 等. 低成本回热填料在液氮温区斯特林制冷机中的应用模拟研究[J]. 真空与低温, 2022, 28(3): 317-323. |
[13] | Wang, J., Pan, C., Zhang, T., Luo, K., Zhou, Y. and Wang, J. (2018) A Novel Method to Hit the Limit Temperature of Stirling-Type Cryocooler. Journal of Applied Physics, 123, Article ID: 063901. https://doi.org/10.1063/1.5013602 |
[14] | Chang, H., Park, D. and Jeong, S. (2000) Effect of Gap Flow on Shuttle Heat Transfer. Cryogenics, 40, 159-166. https://doi.org/10.1016/s0011-2275(00)00020-5 |
[15] | 林锦城, 植晓琴, 韦涛, 等. 大功率脉管制冷机回热器填料优化研究[J]. 低温工程, 2022(3): 6-12. |