全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三阴性乳腺癌免疫微环境特征及免疫治疗进展
Characteristics of the Immune Microenvironment and Progress in Immunotherapy for Triple-Negative Breast Cancer

DOI: 10.12677/wjcr.2025.151004, PP. 24-38

Keywords: 三阴性乳腺癌,免疫微环境,免疫治疗
Triple Negative Breast Cancer
, Immune Microenvironment, Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

三阴性乳腺癌(Triple-Negative Breast Cancer, TNBC)是乳腺癌中最具侵袭性的亚型,由于缺乏雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体2 (HER2)的表达,治疗选择相对有限,预后效果较差。肿瘤免疫微环境(TIME)在三阴性乳腺癌的发生发展、侵袭转移过程中起着关键作用,对患者的预后具有重要的影响。免疫治疗是三阴性乳腺癌的主要治疗手段之一,针对肿瘤免疫微环境的免疫治疗手段为三阴性乳腺癌的治疗的思路提供了新方向。本文就三阴性乳腺癌的免疫微环境特征及主要免疫治疗进展进行综述。
Triple-Negative Breast Cancer (TNBC), the most aggressive subtype of breast cancer, has relatively limited treatment options and poor prognosis due to lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Tumor immune microenvironment (TIME) plays a key role in the occurrence, development, invasion and metastasis of triple-negative breast cancer, and has an important impact on the prognosis of patients. Immunotherapy is one of the main therapeutic methods for triple-negative breast cancer. Immunotherapy targeting the tumor immune microenvironment provides a new direction for the treatment of triple-negative breast cancer. This article reviews the characteristics of the immune microenvironment of triple negative breast cancer and the progress of immunotherapy.

References

[1]  王璐, 林清, 陆春花, 等. EGFR在三阴性乳腺癌中的表达及放疗后表达变化的意义[J]. 医学研究杂志, 2017, 46(3): 120-123.
[2]  Wolff, A.C., Hammond, M.E.H., Hicks, D.G., Dowsett, M., McShane, L.M., Allison, K.H., et al. (2013) Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/college of American Pathologists Clinical Practice Guideline Update. Journal of Clinical Oncology, 31, 3997-4013.
https://doi.org/10.1200/jco.2013.50.9984
[3]  Morris, G.J., Naidu, S., Topham, A.K., Guiles, F., Xu, Y., McCue, P., et al. (2007) Differences in Breast Carcinoma Characteristics in Newly Diagnosed African-American and Caucasian Patients. Cancer, 110, 876-884.
https://doi.org/10.1002/cncr.22836
[4]  Lin, N.U., Claus, E., Sohl, J., Razzak, A.R., Arnaout, A. and Winer, E.P. (2008) Sites of Distant Recurrence and Clinical Outcomes in Patients with Metastatic Triple-Negative Breast Cancer. Cancer, 113, 2638-2645.
https://doi.org/10.1002/cncr.23930
[5]  Steward, L., Conant, L., Gao, F., et al. (2014) Predictive Factors and Patterns of Recurrence in Patients with Triple Negative Breast Cancer. Annals of Surgical Oncology, 21, 2165-2171.
https://doi.org/10.1245/s10434-014-3546-4
[6]  赵雪春, 黄海波. 卵巢癌的免疫学病因研究进展[J]. 中国免疫学杂志, 2014, 30(6): 862-865.
[7]  Salemme, V., Centonze, G., Cavallo, F., Defilippi, P. and Conti, L. (2021) The Crosstalk between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Frontiers in Oncology, 11, Article 610303.
https://doi.org/10.3389/fonc.2021.610303
[8]  Kotsifaki, A., Alevizopoulos, N., Dimopoulou, V. and Armakolas, A. (2023) Unveiling the Immune Microenvironment’s Role in Breast Cancer: A Glimpse into Promising Frontiers. International Journal of Molecular Sciences, 24, Article 15332.
https://doi.org/10.3390/ijms242015332
[9]  Oliver, A.J., Davey, A.S., Keam, S.P., Mardiana, S., Chan, J.D., von Scheidt, B., et al. (2019) Tissue-Specific Tumor Microenvironments Influence Responses to Immunotherapies. Clinical & Translational Immunology, 8, e1094.
https://doi.org/10.1002/cti2.1094
[10]  Stanton, S.E., Adams, S. and Disis, M.L. (2016) Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes. JAMA Oncology, 2, 1354-1360.
https://doi.org/10.1001/jamaoncol.2016.1061
[11]  Han, E., Choi, H.Y., Kwon, H.J., et al. (2024) Characterization of Tumor-Infiltrating Lymphocytes and Their Spatial Distribution in Triple-Negative Breast Cancer. Breast Cancer Research: BCR, 26, 180.
https://doi.org/10.1186/s13058-024-01932-4
[12]  Valenza, C., Salimbeni, B.T., Santoro, C., et al. (2024) Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment.
https://pubmed.ncbi.nlm.nih.gov/36765724/
[13]  Loi, S., Sirtaine, N., Piette, F., Salgado, R., Viale, G., Van Eenoo, F., et al. (2013) Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin with Doxorubicin-Based Chemotherapy: BIG 02-98. Journal of Clinical Oncology, 31, 860-867.
https://doi.org/10.1200/jco.2011.41.0902
[14]  Lin, B., Du, L., Li, H., Zhu, X., Cui, L. and Li, X. (2020) Tumor-Infiltrating Lymphocytes: Warriors Fight against Tumors Powerfully. Biomedicine & Pharmacotherapy, 132, Article 110873.
https://doi.org/10.1016/j.biopha.2020.110873
[15]  McRitchie, B.R. and Akkaya, B. (2022) Exhaust the Exhausters: Targeting Regulatory T Cells in the Tumor Microenvironment. Frontiers in Immunology, 13, Article 940052.
https://doi.org/10.3389/fimmu.2022.940052
[16]  Denkert, C., von Minckwitz, G., Darb-Esfahani, S., Lederer, B., Heppner, B.I., Weber, K.E., et al. (2018) Tumour-Infiltrating Lymphocytes and Prognosis in Different Subtypes of Breast Cancer: A Pooled Analysis of 3771 Patients Treated with Neoadjuvant Therapy. The Lancet Oncology, 19, 40-50.
https://doi.org/10.1016/s1470-2045(17)30904-x
[17]  Simon, R.M., Paik, S. and Hayes, D.F. (2009) Use of Archived Specimens in Evaluation of Prognostic and Predictive Biomarkers. JNCI Journal of the National Cancer Institute, 101, 1446-1452.
https://doi.org/10.1093/jnci/djp335
[18]  刘泽涵, 刘双晴, 武雪亮, 等. 胆管癌免疫微环境特征与免疫治疗: 机制、挑战与前景[J]. 中国比较医学杂志, 2024, 34(7): 168-174.
[19]  Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M. and Ley, K. (2010) Development of Monocytes, Macrophages, and Dendritic Cells. Science, 327, 656-661.
https://doi.org/10.1126/science.1178331
[20]  Boutilier, A.J. and Elsawa, S.F. (2021) Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 6995.
https://doi.org/10.3390/ijms22136995
[21]  Genard, G., Lucas, S. and Michiels, C. (2017) Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo and Immunotherapies. Frontiers in Immunology, 8, Article 828.
https://doi.org/10.3389/fimmu.2017.00828
[22]  König, L., Mairinger, F.D., Hoffmann, O., Bittner, A., Schmid, K.W., Kimmig, R., et al. (2019) Dissimilar Patterns of Tumor-Infiltrating Immune Cells at the Invasive Tumor Front and Tumor Center Are Associated with Response to Neoadjuvant Chemotherapy in Primary Breast Cancer. BMC Cancer, 19, Article No. 120.
https://doi.org/10.1186/s12885-019-5320-2
[23]  Allavena, P., Sica, A., Solinas, G., Porta, C. and Mantovani, A. (2008) The Inflammatory Micro-Environment in Tumor Progression: The Role of Tumor-Associated Macrophages. Critical Reviews in Oncology/Hematology, 66, 1-9.
https://doi.org/10.1016/j.critrevonc.2007.07.004
[24]  Nandi, B., Shapiro, M., Samur, M.K., Pai, C., Frank, N.Y., Yoon, C., et al. (2016) Stromal CCR6 Drives Tumor Growth in a Murine Transplantable Colon Cancer through Recruitment of Tumor-Promoting Macrophages. OncoImmunology, 5, e1189052.
https://doi.org/10.1080/2162402x.2016.1189052
[25]  Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., et al. (2014) A Positive Feedback Loop between Mesenchymal-Like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis. Cancer Cell, 25, 605-620.
https://doi.org/10.1016/j.ccr.2014.03.021
[26]  O'Sullivan, C., Lewis, C.E., McGee, J.O. and Harris, A.L. (1993) Secretion of Epidermal Growth Factor by Macrophages Associated with Breast Carcinoma. The Lancet, 342, 148-149.
https://doi.org/10.1016/0140-6736(93)91348-p
[27]  Mason, S.D. and Joyce, J.A. (2011) Proteolytic Networks in Cancer. Trends in Cell Biology, 21, 228-237.
https://doi.org/10.1016/j.tcb.2010.12.002
[28]  Zabuawala, T., Taffany, D.A., Sharma, S.M., Merchant, A., Adair, B., Srinivasan, R., et al. (2010) An Ets2-Driven Transcriptional Program in Tumor-Associated Macrophages Promotes Tumor Metastasis. Cancer Research, 70, 1323-1333.
https://doi.org/10.1158/0008-5472.can-09-1474
[29]  Chen, Y., Song, Y., Du, W., Gong, L., Chang, H. and Zou, Z. (2019) Tumor-Associated Macrophages: An Accomplice in Solid Tumor Progression. Journal of Biomedical Science, 26, Article No. 78.
https://doi.org/10.1186/s12929-019-0568-z
[30]  Kryczek, I., Zou, L., Rodriguez, P., Zhu, G., Wei, S., Mottram, P., et al. (2006) B7-H4 Expression Identifies a Novel Suppressive Macrophage Population in Human Ovarian Carcinoma. The Journal of Experimental Medicine, 203, 871-881.
https://doi.org/10.1084/jem.20050930
[31]  Chen, L. and Flies, D.B. (2013) Molecular Mechanisms of T Cell Co-Stimulation and Co-Inhibition. Nature Reviews Immunology, 13, 227-242.
https://doi.org/10.1038/nri3405
[32]  Habanjar, O., Bingula, R., Decombat, C., Diab-Assaf, M., Caldefie-Chezet, F. and Delort, L. (2023) Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. International Journal of Molecular Sciences, 24, Article 4002.
https://doi.org/10.3390/ijms24044002
[33]  Meng, J., Yang, Y., Lv, J., Lv, H., Zhao, X., Zhang, L., et al. (2024) CXCR6 Expression Correlates with Radiotherapy Response and Immune Context in Triple-Negative Breast Cancer (Experimental Studies). International Journal of Surgery, 110, 4695-4707.
https://doi.org/10.1097/js9.0000000000001546
[34]  Liu, H., Yang, Z., Lu, W., Chen, Z., Chen, L., Han, S., et al. (2020) Chemokines and Chemokine Receptors: A New Strategy for Breast Cancer Therapy. Cancer Medicine, 9, 3786-3799.
https://doi.org/10.1002/cam4.3014
[35]  Kim, B., Malek, E., Choi, S.H., Ignatz-Hoover, J.J. and Driscoll, J.J. (2021) Novel Therapies Emerging in Oncology to Target the TGF-Β Pathway. Journal of Hematology & Oncology, 14, Article No. 55.
https://doi.org/10.1186/s13045-021-01053-x
[36]  Seoane, J. and Gomis, R.R. (2017) TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, 9, a022277.
https://doi.org/10.1101/cshperspect.a022277
[37]  Derynck, R., Turley, S.J. and Akhurst, R.J. (2020) TGFβ Biology in Cancer Progression and Immunotherapy. Nature Reviews Clinical Oncology, 18, 9-34.
https://doi.org/10.1038/s41571-020-0403-1
[38]  Tzang, B., Chen, V.C., Hsieh, C., Wang, W., Weng, Y., Ho, H., et al. (2020) Differential Associations of Proinflammatory and Anti-Inflammatory Cytokines with Depression Severity from Noncancer Status to Breast Cancer Course and Subsequent Chemotherapy. BMC Cancer, 20, Article No. 686.
https://doi.org/10.1186/s12885-020-07181-w
[39]  Qin, S., Xu, L., Yi, M., Yu, S., Wu, K. and Luo, S. (2019) Novel Immune Checkpoint Targets: Moving Beyond PD-1 and CTLA-4. Molecular Cancer, 18, Article No. 155.
https://doi.org/10.1186/s12943-019-1091-2
[40]  Ren, Y., Song, J., Li, X. and Luo, N. (2022) Rationale and Clinical Research Progress on Pd-1/Pd-L1-Based Immunotherapy for Metastatic Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 23, Article 8878.
https://doi.org/10.3390/ijms23168878
[41]  Kwa, M.J. and Adams, S. (2018) Checkpoint Inhibitors in Triple-Negative Breast Cancer (TNBC): Where to Go from Here. Cancer, 124, 2086-2103.
https://doi.org/10.1002/cncr.31272
[42]  Gonzalez-Ericsson, P.I., Stovgaard, E.S., Sua, L.F., Reisenbichler, E., Kos, Z., Carter, J.M., et al. (2020) The Path to a Better Biomarker: Application of a Risk Management Framework for the Implementation of PD-L1 and Tils as Immuno-Oncology Biomarkers in Breast Cancer Clinical Trials and Daily Practice. The Journal of Pathology, 250, 667-684.
https://doi.org/10.1002/path.5406
[43]  Wimberly, H., Brown, J.R., Schalper, K., Haack, H., Silver, M.R., Nixon, C., et al. (2015) PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Immunology Research, 3, 326-332.
https://doi.org/10.1158/2326-6066.cir-14-0133
[44]  Xiao, B., Lin, G., Zhao, Y. and Wang, B. (2020) The Efficacy and Safety of PD-1/PD-L1 Inhibitors in Breast Cancer: A Systematic Review and Meta-Analysis. Translational Cancer Research, 9, 3804-3818.
https://doi.org/10.21037/tcr-19-3020
[45]  Cortes, J., Cescon, D.W., Rugo, H.S., Nowecki, Z., Im, S., Yusof, M.M., et al. (2020) Pembrolizumab Plus Chemotherapy versus Placebo Plus Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer (KEYNOTE-355): A Randomized, Placebo-Controlled, Double-Blind, Phase 3 Clinical Trial. The Lancet, 396, 1817-1828.
https://doi.org/10.1016/s0140-6736(20)32531-9
[46]  Rudd, C.E., Taylor, A. and Schneider, H. (2009) CD28 and CTLA-4 Coreceptor Expression and Signal Transduction. Immunological Reviews, 229, 12-26.
https://doi.org/10.1111/j.1600-065x.2009.00770.x
[47]  Rowshanravan, B., Halliday, N. and Sansom, D.M. (2018) CTLA-4: A Moving Target in Immunotherapy. Blood, 131, 58-67.
https://doi.org/10.1182/blood-2017-06-741033
[48]  Peggs, K.S., Quezada, S.A., Chambers, C.A., Korman, A.J. and Allison, J.P. (2009) Blockade of CTLA-4 on Both Effector and Regulatory T Cell Compartments Contributes to the Antitumor Activity of Anti-CTLA-4 Antibodies. Journal of Experimental Medicine, 206, 1717-1725.
https://doi.org/10.1084/jem.20082492
[49]  Ager, C.R., Obradovic, A., Mccann, P., et al. (2024) Neoadjuvant Androgen Deprivation Therapy with or without FC-Enhanced Non-Fucosylated Anti-CTLA-4 (BMS-986218) in High Risk Localized Prostate Cancer: A Randomized Phase 1 Trial.
https://doi.org/10.1101/2024.09.09.24313308
[50]  Rozenblit, M., Huang, R., Danziger, N., Hegde, P., Alexander, B., Ramkissoon, S., et al. (2020) Comparison of PD-L1 Protein Expression between Primary Tumors and Metastatic Lesions in Triple Negative Breast Cancers. Journal for Immuno-Therapy of Cancer, 8, e001558.
https://doi.org/10.1136/jitc-2020-001558
[51]  Tolaney, S.M., Kalinsky, K., Kaklamani, V.G., D’Adamo, D.R., Aktan, G., Tsai, M.L., et al. (2021) Eribulin Plus Pembrolizumab in Patients with Metastatic Triple-Negative Breast Cancer (ENHANCE 1): A Phase IB/II Study. Clinical Cancer Research, 27, 3061-3068.
https://doi.org/10.1158/1078-0432.ccr-20-4726
[52]  Gandhi, M.K., Lambley, E., Duraiswamy, J., Dua, U., Smith, C., Elliott, S., et al. (2006) Expression of LAG-3 by Tumor-Infiltrating Lymphocytes Is Coincident with the Suppression of Latent Membrane Antigen-Specific CD8+ T-Cell Function in Hodgkin Lymphoma Patients. Blood, 108, 2280-2289.
https://doi.org/10.1182/blood-2006-04-015164
[53]  Andrews, L.P., Butler, S.C., Cui, J., Cillo, A.R., Cardello, C., Liu, C., et al. (2024) LAG-3 and PD-1 Synergize on CD8+ T Cells to Drive T Cell Exhaustion and Hinder Autocrine IFN-Γ-Dependent Anti-Tumor Immunity. Cell, 187, 4355-4372.e22.
https://doi.org/10.1016/j.cell.2024.07.016
[54]  Qin, S., Xu, L., Yi, M., Yu, S., Wu, K. and Luo, S. (2019) Novel Immune Checkpoint Targets: Moving beyond PD-1 and CTLA-4. Molecular Cancer, 18, Article No. 155.
https://doi.org/10.1186/s12943-019-1091-2
[55]  Sordo-Bahamonde, C., Lorenzo-Herrero, S., González-Rodríguez, A.P., Payer, Á.R., González-García, E., López-Soto, A., et al. (2021) LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers, 13, Article 2112.
https://doi.org/10.3390/cancers13092112
[56]  Kraman, M., Faroudi, M., Allen, N.L., Kmiecik, K., Gliddon, D., Seal, C., et al. (2020) FS118, a Bispecific Antibody Targeting LAG-3 and PD-L1, Enhances T-Cell Activation Resulting in Potent Antitumor Activity. Clinical Cancer Research, 26, 3333-3344.
https://doi.org/10.1158/1078-0432.ccr-19-3548
[57]  Kristeleit, R., Leary, A., Oaknin, A., Redondo, A., George, A., Chui, S., et al. (2024) PARP Inhibition with Rucaparib Alone Followed by Combination with Atezolizumab: Phase IB COUPLET Clinical Study in Advanced Gynaecological and Triple-Negative Breast Cancers. British Journal of Cancer, 131, 820-831.
https://doi.org/10.1038/s41416-024-02776-7
[58]  Marin-Acevedo, J.A., Kimbrough, E.O. and Lou, Y. (2021) Next Generation of Immune Checkpoint Inhibitors and Beyond. Journal of Hematology & Oncology, 14, Article No. 45.
https://doi.org/10.1186/s13045-021-01056-8
[59]  Sommaggio, R., Cappuzzello, E., Dalla Pietà, A., Tosi, A., Palmerini, P., Carpanese, D., et al. (2020) Adoptive Cell Therapy of Triple Negative Breast Cancer with Redirected Cytokine-Induced Killer Cells. Onco-Immunology, 9, Article 1777046.
https://doi.org/10.1080/2162402x.2020.1777046
[60]  Nimmerjahn, F. and Ravetch, J.V. (2008) FCγ Receptors as Regulators of Immune Responses. Nature Reviews Immunology, 8, 34-47.
https://doi.org/10.1038/nri2206
[61]  Schmidt, P., Raftery, M.J. and Pecher, G. (2020) Engineering NK Cells for CAR Therapy-Recent Advances in Gene Transfer Methodology. Frontiers in Immunology, 11, 611163.
https://doi.org/10.3389/fimmu.2020.611163
[62]  贾宇, 陈彦, 刘建生. 肝癌的NK细胞免疫治疗研究[J]. 胃肠病学和肝病学杂志, 2021, 30(11): 1219-1223.
[63]  Untch, M., Konecny, G.E., Paepke, S. and von Minckwitz, G. (2014) Current and Future Role of Neoadjuvant Therapy for Breast Cancer. The Breast, 23, 526-537.
https://doi.org/10.1016/j.breast.2014.06.004
[64]  Albu, D.I., Wolf, B.J., Qin, Y., Wang, X., Daniel Ulumben, A., Su, M., et al. (2024) A Bispecific Anti-Pd-1 and PD-L1 Antibody Induces PD-1 Cleavage and Provides Enhanced Anti-Tumor Activity. Onco-Immunology, 13, Article 2316945.
https://doi.org/10.1080/2162402x.2024.2316945
[65]  Jabbour, E., Düll, J., Yilmaz, M., Khoury, J.D., Ravandi, F., Jain, N., et al. (2017) Outcome of Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia after Blinatumomab Failure: No Change in the Level of CD19 Expression. American Journal of Hematology, 93, 371-374.
https://doi.org/10.1002/ajh.24987
[66]  Chames, P., Van Regenmortel, M., Weiss, E. and Baty, D. (2009) Therapeutic Antibodies: Successes, Limitations and Hopes for the Future. British Journal of Pharmacology, 157, 220-233.
https://doi.org/10.1111/j.1476-5381.2009.00190.x
[67]  Heiss, M.M., Murawa, P., Koralewski, P., Kutarska, E., Kolesnik, O.O., Ivanchenko, V.V., et al. (2010) The Trifunctional Antibody Catumaxomab for the Treatment of Malignant Ascites Due to Epithelial Cancer: Results of a Prospective Randomized Phase II/III Trial. International Journal of Cancer, 127, 2209-2221.
https://doi.org/10.1002/ijc.25423
[68]  Liu, Y., Zhou, Y., Huang, K., Li, Y., Fang, X., An, L., et al. (2019) EGFR-Specific CAR-T Cells Trigger Cell Lysis in EGFR-Positive TNBC. Aging, 11, 11054-11072.
https://doi.org/10.18632/aging.102510
[69]  Cha, J., Chan, L., Wang, Y., Chu, Y., Wang, C., Lee, H., et al. (2022) Ephrin Receptor A10 Monoclonal Antibodies and the Derived Chimeric Antigen Receptor T Cells Exert an Antitumor Response in Mouse Models of Triple-Negative Breast Cancer. Journal of Biological Chemistry, 298, Article 101817.
https://doi.org/10.1016/j.jbc.2022.101817
[70]  Song, W. and Zhang, M. (2020) Use of CAR-T Cell Therapy, PD-1 Blockade, and Their Combination for the Treatment of Hematological Malignancies. Clinical Immunology, 214, Article 108382.
https://doi.org/10.1016/j.clim.2020.108382
[71]  Adusumilli, P.S., Zauderer, M.G., Rivière, I., Solomon, S.B., Rusch, V.W., O’Cearbhaill, R.E., et al. (2021) A Phase I Trial of Regional Mesothelin-Targeted CAR T-Cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-Pd-1 Agent Pembrolizumab. Cancer Discovery, 11, 2748-2763.
https://doi.org/10.1158/2159-8290.cd-21-0407
[72]  Sang, W., Wang, X., Geng, H., Li, T., Li, D., Zhang, B., et al. (2022) Anti-Pd-1 Therapy Enhances the Efficacy of Cd30-Directed Chimeric Antigen Receptor T Cell Therapy in Patients with Relapsed/refractory CD30+ Lymphoma. Frontiers in Immunology, 13, Article 858021.
https://doi.org/10.3389/fimmu.2022.858021
[73]  邵笛, 余天剑, 邵志敏. 三阴性乳腺癌精准治疗研究进展[J]. 中国普通外科杂志, 2023, 32(11): 1629-1638.
[74]  Igarashi, Y. and Sasada, T. (2020) Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. Journal of Immunology Research, 2020, 1-13.
https://doi.org/10.1155/2020/5825401
[75]  Zhu, Y., Zhu, X., Tang, C., Guan, X. and Zhang, W. (2021) Progress and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article 188593.
https://doi.org/10.1016/j.bbcan.2021.188593
[76]  Ge, Y., Xi, H., Ju, S. and Zhang, X. (2013) Blockade of Pd-1/Pd-L1 Immune Checkpoint during DC Vaccination Induces Potent Protective Immunity against Breast Cancer in Hu-SCID Mice. Cancer Letters, 336, 253-259.
https://doi.org/10.1016/j.canlet.2013.03.010
[77]  Pruitt, S.K., Boczkowski, D., de Rosa, N., Haley, N.R., Morse, M.A., Tyler, D.S., et al. (2011) Enhancement of Anti-Tumor Immunity through Local Modulation of CTLA-4 and GITR by Dendritic Cells. European Journal of Immunology, 41, 3553-3563.
https://doi.org/10.1002/eji.201141383
[78]  Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904.
https://doi.org/10.1038/nrd.2018.169
[79]  郭刚, 张帆, 杜青山, 等. 舒尼替尼在晚期肾细胞癌二线序贯治疗中的临床应用研究[J]. 临床泌尿外科杂志, 2014, 29(1): 61-64.
[80]  Chellappan, D.K., Chellian, J., Ng, Z.Y., Sim, Y.J., Theng, C.W., Ling, J., et al. (2017) The Role of Pazopanib on Tumour Angiogenesis and in the Management of Cancers: A Review. Biomedicine & Pharmacotherapy, 96, 768-781.
https://doi.org/10.1016/j.biopha.2017.10.058
[81]  Shen, H., Peng, J., Wang, R., Wang, P., Zhang, J., Sun, H., et al. (2024) IL-12-Overexpressed Nanoparticles Suppress the Proliferation of Melanoma through Inducing ICD and Activating DC, CD8+ T, and CD4+ T Cells. International Journal of Nanomedicine, 19, 2755-2772.
https://doi.org/10.2147/ijn.s442446
[82]  Frankish, J., Mukherjee, D., Romano, E., Billian-Frey, K., Schröder, M., Heinonen, K., et al. (2023) The CD40 Agonist HERA-CD40L Results in Enhanced Activation of Antigen Presenting Cells, Promoting an Anti-Tumor Effect Alone and in Combination with Radiotherapy. Frontiers in Immunology, 14, Article 1160116.
https://doi.org/10.3389/fimmu.2023.1160116
[83]  Luheshi, N.M., Coates-Ulrichsen, J., Harper, J., Mullins, S., Sulikowski, M.G., Martin, P., et al. (2016) Transformation of the Tumour Microenvironment by a CD40 Agonist Antibody Correlates with Improved Responses to PD-L1 Blockade in a Mouse Orthotopic Pancreatic Tumour Model. Oncotarget, 7, 18508-18520.
https://doi.org/10.18632/oncotarget.7610
[84]  Conlon, K.C., Miljkovic, M.D. and Waldmann, T.A. (2019) Cytokines in the Treatment of Cancer. Journal of Interferon & Cytokine Research, 39, 6-21.
https://doi.org/10.1089/jir.2018.0019
[85]  Heo, T., Wahler, J. and Suh, N. (2016) Potential Therapeutic Implications of IL-6/IL-6R/gp130-Targeting Agents in Breast Cancer. Oncotarget, 7, 15460-15473.
https://doi.org/10.18632/oncotarget.7102
[86]  Guney Eskiler, G. and Bilir, C. (2021) The Efficacy of Indoximod Upon Stimulation with Pro-Inflammatory Cytokines in Triple-Negative Breast Cancer Cells. Immunopharmacology and Immunotoxicology, 43, 554-561.
https://doi.org/10.1080/08923973.2021.1953064
[87]  Zhou, F. (2009) Molecular Mechanisms of IFN-Gamma to Up-Regulate MHC Class I Antigen Processing and Presentation. International Reviews of Immunology, 28, 239-260.
https://doi.org/10.1080/08830180902978120
[88]  Tarantino, P., Corti, C., Schmid, P., Cortes, J., Mittendorf, E.A., Rugo, H., et al. (2022) Immunotherapy for Early Triple Negative Breast Cancer: Research Agenda for the Next Decade. npj Breast Cancer, 8, Article No. 23.
https://doi.org/10.1038/s41523-022-00386-1
[89]  Jiang, Z., Ouyang, Q., Sun, T., Zhang, Q., Teng, Y., Cui, J., et al. (2024) Toripalimab Plus Nab-Paclitaxel in Metastatic or Recurrent Triple-Negative Breast Cancer: A Randomized Phase 3 Trial. Nature Medicine, 30, 249-256.
https://doi.org/10.1038/s41591-023-02677-x
[90]  Agostinetto, E., Losurdo, A., Nader-Marta, G., Santoro, A., Punie, K., Barroso, R., et al. (2022) Progress and Pitfalls in the Use of Immunotherapy for Patients with Triple Negative Breast Cancer. Expert Opinion on Investigational Drugs, 31, 567-591.
https://doi.org/10.1080/13543784.2022.2049232

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133