全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

婴幼儿单纯室间隔缺损术前心力衰竭及术后不良事件发生预测因素的研究进展
Research Progress on Predictive Factors for Preoperative Heart Failure and Postoperative Adverse Events in Infants with Isolated Ventricular Septal Defect

DOI: 10.12677/acm.2025.151032, PP. 211-217

Keywords: 室间隔缺损,小儿心力衰竭,术后不良事件,生物标志物,机器学习
Ventricular Septal Defect
, Pediatric Heart Failure, Postoperative Adverse Events, Biomarkers, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

室间隔缺损(Ventricular Septal Defect, VSD)是临床上最常见的先天性心脏疾病(Congenital heart disease, CHD),不仅可单独发生,也可与其他复杂心脏畸形共存。VSD手术治疗在降低患儿的病死率和提高其生活质量方面具有不可忽视的作用。手术前心力衰竭(Heart Failure, HF)的准确诊断及干预是提高手术成功率、降低术后不良事件发生的关键。在成人心力衰竭诊断中常将脑钠肽(Brain Natriuretic Peptide, BNP)等生物标志物作为诊断和治疗的依据,然而小儿心力衰竭及先天性心脏病,没有任何临床生物标志物作为诊断或治疗的标准指南。在信息时代,基于机器学习(Machine Learning, ML)算法建立的模型可提高对相关危险因素预测的准确性。本文结合相关文献对室间隔缺损术前心力衰竭及术后不良事件发生的预测因素进行总结。
Ventricular Septal Defect (VSD) is the most common congenital heart disease (CHD) clinically, which can occur either alone or in combination with other complex heart malformations. Surgical treatment of VSD plays a significant role in reducing mortality and improving the quality of life of affected children. Accurate diagnosis and intervention for heart failure (HF) before surgery are crucial for enhancing surgical success rates and minimizing postoperative adverse events. In adult heart failure diagnosis, biomarkers such as brain natriuretic peptide (BNP) are often used as a basis for diagnosis and treatment. Nevertheless, for pediatric heart failure and congenital heart disease, there are no clinical biomarkers serving as standard guidelines for diagnosis or treatment. In the information era, models based on machine learning (ML) algorithms can improve the accuracy of predicting relevant risk factors. This article summarizes the predictive factors for preoperative heart failure and postoperative adverse events in patients with ventricular septal defects, drawing on relevant literature.

References

[1]  李烁琳, 顾若漪, 黄国英. 儿童先天性心脏病流行病学特征[J]. 中国实用儿科杂志, 2017, 32(11): 871-875.
[2]  Penny, D.J. and Vick, G.W. (2011) Ventricular Septal Defect. The Lancet, 377, 1103-1112.
https://doi.org/10.1016/s0140-6736(10)61339-6
[3]  Kirk, R., Dipchand, A.I., Rosenthal, D.N., Addonizio, L., Burch, M., Chrisant, M., et al. (2014) The International Society for Heart and Lung Transplantation Guidelines for the Management of Pediatric Heart Failure: Executive Summary. The Journal of Heart and Lung Transplantation, 33, 888-909.
https://doi.org/10.1016/j.healun.2014.06.002
[4]  Hsu, D.T. and Pearson, G.D. (2009) Heart Failure in Children: Part I: History, Etiology, and Pathophysiology. Circulation: Heart Failure, 2, 63-70.
https://doi.org/10.1161/circheartfailure.108.820217
[5]  Hsu, D.T. and Pearson, G.D. (2009) Heart Failure in Children: Part II: Diagnosis, Treatment, and Future Directions. Circulation: Heart Failure, 2, 490-498.
[6]  Hinton, R.B. and Ware, S.M. (2017) Heart Failure in Pediatric Patients with Congenital Heart Disease. Circulation Research, 120, 978-994.
https://doi.org/10.1161/circresaha.116.308996
[7]  Sommers, C., Nagel, B.H.P., Neudorf, U., et al. (2005) Congestive Heart Failure in Childhood: An Epidemiologic Study. Herz, 30, 652-662.
[8]  Massin, M.M., Astadicko, I. and Dessy, H. (2008) Epidemiology of Heart Failure in a Tertiary Pediatric Center. Clinical Cardiology, 31, 388-391.
https://doi.org/10.1002/clc.20262
[9]  Norozi, K., Wessel, A., Alpers, V., Arnhold, J.O., Geyer, S., Zoege, M., et al. (2006) Incidence and Risk Distribution of Heart Failure in Adolescents and Adults with Congenital Heart Disease after Cardiac Surgery. The American Journal of Cardiology, 97, 1238-1243.
https://doi.org/10.1016/j.amjcard.2005.10.065
[10]  Harris, K.C., Voss, C., Rankin, K., Aminzadah, B., Gardner, R. and Mackie, A.S. (2018) Modifiable Cardiovascular Risk Factors in Adolescents and Adults with Congenital Heart Disease. Congenital Heart Disease, 13, 563-570.
https://doi.org/10.1111/chd.12612
[11]  Parrott, A. and Ware, S.M. (2012) The Role of the Geneticist and Genetic Counselor in an ACHD Clinic. Progress in Pediatric Cardiology, 34, 15-20.
https://doi.org/10.1016/j.ppedcard.2012.05.004
[12]  Webb, G., Mulder, B.J., Aboulhosn, J., Daniels, C.J., Elizari, M.A., Hong, G., et al. (2015) The Care of Adults with Congenital Heart Disease across the Globe: Current Assessment and Future Perspective. International Journal of Cardiology, 195, 326-333.
https://doi.org/10.1016/j.ijcard.2015.04.230
[13]  Spaziani, G., Bennati, E., Marrone, C., Lucà, F., Iorio, A., Rao, C.M., et al. (2021) Pathophysiology and Clinical Presentation of Paediatric Heart Failure Related to Congenital Heart Disease. Acta Paediatrica, 110, 2336-2343.
https://doi.org/10.1111/apa.15904
[14]  Mangili, G., Garzoli, E. and Sadou, Y. (2018) Feeding Dysfunctions and Failure to Thrive in Neonates with Congenital Heart Diseases. La Pediatria Medica e Chirurgica, 40.
https://doi.org/10.4081/pmc.2018.196
[15]  Roguin, N., Du, Z., Barak, M., Nasser, N., Hershkowitz, S. and Milgram, E. (1995) High Prevalence of Muscular Ventricular Septal Defect in Neonates. Journal of the American College of Cardiology, 26, 1545-1548.
https://doi.org/10.1016/0735-1097(95)00358-4
[16]  Scully, B.B., Morales, D.L.S., Zafar, F., McKenzie, E.D., Fraser, C.D. and Heinle, J.S. (2010) Current Expectations for Surgical Repair of Isolated Ventricular Septal Defects. The Annals of Thoracic Surgery, 89, 544-551.
https://doi.org/10.1016/j.athoracsur.2009.10.057
[17]  Anderson, B.R., Stevens, K.N., Nicolson, S.C., Gruber, S.B., Spray, T.L., Wernovsky, G., et al. (2013) Contemporary Outcomes of Surgical Ventricular Septal Defect Closure. The Journal of Thoracic and Cardiovascular Surgery, 145, 641-647.
https://doi.org/10.1016/j.jtcvs.2012.11.032
[18]  Ergün, S., Genç, S.B., Yildiz, O., Öztürk, E., Kafalı, H.C., Ayyıldız, P., et al. (2019) Risk Factors for Major Adverse Events after Surgical Closure of Ventricular Septal Defect in Patients Less than 1 Year of Age: A Single-Center Retrospective. Brazilian Journal of Cardiovascular Surgery, 34, 335-343.
https://doi.org/10.21470/1678-9741-2018-0299
[19]  Kogon, B., Butler, H., Kirshbom, P., Kanter, K. and McConnell, M. (2007) Closure of Symptomatic Ventricular Septal Defects: How Early Is Too Early? Pediatric Cardiology, 29, 36-39.
https://doi.org/10.1007/s00246-007-9016-z
[20]  Schipper, M., Slieker, M.G., Schoof, P.H. and Breur, J.M.P.J. (2016) Surgical Repair of Ventricular Septal Defect; Contemporary Results and Risk Factors for a Complicated Course. Pediatric Cardiology, 38, 264-270.
https://doi.org/10.1007/s00246-016-1508-2
[21]  Shalmi, T.W., Jensen, A.S.B. and Goetze, J.P. (2024) Cardiac Natriuretic Peptides. Advances in Clinical Chemistry, 122, 115-139.
https://doi.org/10.1016/bs.acc.2024.06.009
[22]  Don-Wauchope, A.C. and McKelvie, R.S. (2015) Evidence Based Application of BNP/NT-proBNP Testing in Heart Failure. Clinical Biochemistry, 48, 236-246.
https://doi.org/10.1016/j.clinbiochem.2014.11.002
[23]  Castiglione, V., Aimo, A., Vergaro, G., Saccaro, L., Passino, C. and Emdin, M. (2021) Biomarkers for the Diagnosis and Management of Heart Failure. Heart Failure Reviews, 27, 625-643.
https://doi.org/10.1007/s10741-021-10105-w
[24]  Cantinotti, M., Walters, H.L., Crocetti, M., Marotta, M., Murzi, B. and Clerico, A. (2015) BNP in Children with Congenital Cardiac Disease: Is There Now Sufficient Evidence for Its Routine Use? Cardiology in the Young, 25, 424-437.
https://doi.org/10.1017/s1047951114002133
[25]  Yancy, C.W., Jessup, M., Bozkurt, B., Butler, J., Casey, D.E., Colvin, M.M., et al. (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure. Journal of Cardiac Failure, 23, 628-651.
https://doi.org/10.1016/j.cardfail.2017.04.014
[26]  Boucek, R.J., Kasselberg, A.G., Boerth, R.C., Parrish, M.D. and Graham, T.P. (1982) Myocardial Injury in Infants with Congenital Heart Disease: Evaluation by Creatine Kinase MB Isoenzyme Analysis. The American Journal of Cardiology, 50, 129-135.
https://doi.org/10.1016/0002-9149(82)90018-2
[27]  Neves, A.L., Cabral, M., Leite-Moreira, A., Monterroso, J., Ramalho, C., Guimarães, H., et al. (2016) Myocardial Injury Biomarkers in Newborns with Congenital Heart Disease. Pediatrics & Neonatology, 57, 488-495.
https://doi.org/10.1016/j.pedneo.2015.11.004
[28]  Rochette, L., Dogon, G., Zeller, M., Cottin, Y. and Vergely, C. (2021) GDF15 and Cardiac Cells: Current Concepts and New Insights. International Journal of Molecular Sciences, 22, Article 8889.
https://doi.org/10.3390/ijms22168889
[29]  Drüeke, T.B. and Massy, Z.A. (2009) Progress in Uremic Toxin Research: β2‐Microglobulin. Seminars in Dialysis, 22, 378-380.
https://doi.org/10.1111/j.1525-139x.2009.00584.x
[30]  Zhou, Z.X., Zhang, J., et al. (2020) Diagnostic Value of Growth Differentiation Factor-15 and β2-Microglobulin in Children with Congenital Heart Disease Combined with Chronic Heart Failure and Its Relationship with Cardiac Function. European Review for Medical and Pharmacological Sciences, 24, 8096-8103.
[31]  Cheng, Z., Cai, K., Xu, C., Zhan, Q., Xu, X., Xu, D., et al. (2022) Prognostic Value of Serum Galectin-3 in Chronic Heart Failure: A Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Article 783707.
https://doi.org/10.3389/fcvm.2022.783707
[32]  El Amrousy, D., Hodeib, H., Suliman, G., Hablas, N., Salama, E.R. and Esam, A. (2016) Diagnostic and Prognostic Value of Plasma Levels of Cardiac Myosin Binding Protein-C as a Novel Biomarker in Heart Failure. Pediatric Cardiology, 38, 418-424.
https://doi.org/10.1007/s00246-016-1532-2
[33]  Morris, S.A. and Lopez, K.N. (2021) Deep Learning for Detecting Congenital Heart Disease in the Fetus. Nature Medicine, 27, 764-765.
https://doi.org/10.1038/s41591-021-01354-1
[34]  Krittanawong, C., Rogers, A.J., Johnson, K.W., Wang, Z., Turakhia, M.P., Halperin, J.L., et al. (2020) Integration of Novel Monitoring Devices with Machine Learning Technology for Scalable Cardiovascular Management. Nature Reviews Cardiology, 18, 75-91.
https://doi.org/10.1038/s41569-020-00445-9
[35]  Krittanawong, C., Johnson, K.W., Rosenson, R.S., Wang, Z., Aydar, M., Baber, U., et al. (2019) Deep Learning for Cardiovascular Medicine: A Practical Primer. European Heart Journal, 40, 2058-2073.
https://doi.org/10.1093/eurheartj/ehz056
[36]  Krittanawong, C., Virk, H.U.H., Kumar, A., Aydar, M., Wang, Z., Stewart, M.P., et al. (2021) Machine Learning and Deep Learning to Predict Mortality in Patients with Spontaneous Coronary Artery Dissection. Scientific Reports, 11, Article No. 8992.
https://doi.org/10.1038/s41598-021-88172-0
[37]  Du, X., Wang, H., Wang, S., He, Y., Zheng, J., Zhang, H., et al. (2022) Machine Learning Model for Predicting Risk of In-Hospital Mortality after Surgery in Congenital Heart Disease Patients. Reviews in Cardiovascular Medicine, 23, Article No. 376.
https://doi.org/10.31083/j.rcm2311376
[38]  Luo, C., Zhu, Y., Zhu, Z., Li, R., Chen, G. and Wang, Z. (2022) A Machine Learning-Based Risk Stratification Tool for In-Hospital Mortality of Intensive Care Unit Patients with Heart Failure. Journal of Translational Medicine, 20, Article No. 136.
https://doi.org/10.1186/s12967-022-03340-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133