全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

针灸治疗类风湿关节炎的炎症因子机制的研究进展
Research Progress on the Regulation of Inflammatory Factors by Acupuncture in the Treatment of Rheumatoid Arthritis

DOI: 10.12677/acm.2025.151030, PP. 196-203

Keywords: 针灸,类风湿关节炎,炎症因子,研究进展
Acupuncture
, Rheumatoid Arthritis, Inflammatory Factors, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

炎症因子是类风湿关节炎(RA)进程中的重要细胞因子,能够促进滑膜炎症、破坏骨与软骨,加重临床症状。针灸,包括普通针刺、电针、温针灸、蜂针等,因患者依从性好、疗效显著、副作用小等特点,在RA的治疗中发挥积极作用。临床研究与基础研究均证明了针灸能通过降低促炎细胞因子和升高抑炎细胞因子来调节机体免疫、调控信号通路、减轻滑膜炎症,使骨与软骨得到保护,RA症状得以改善。文章对近几年针灸在治疗RA中对炎症因子的影响进行综述,为今后RA的临床治疗提供参考与思路。
Inflammatory factors are important cytokines in the progression of Rheumatoid Arthritis (RA), which can promote synovial inflammation, damage bones and cartilage, and worsen clinical symptoms. Acupuncture, including common needling, electroacupuncture, warm needling, and bee venom acupuncture, plays a positive role in the treatment of RA due to characteristics such as good patient compliance, significant efficacy, and minimal side effects. Clinical and basic research have both confirmed that acupuncture can regulate body immunity, control signaling pathways, and reduce synovial inflammation by lowering pro-inflammatory cytokines and increasing anti-inflammatory cytokines, thus protecting bones and cartilage and improving RA symptoms. This article provides a review of the impact of acupuncture on inflammatory factors in the treatment of RA in recent years. It offers references and insights for future clinical treatment of RA.

References

[1]  Sparks, J.A. (2019) Rheumatoid Arthritis. Annals of Internal Medicine, 170, ITC1.
https://doi.org/10.7326/aitc201901010
[2]  Wan, R., Fan, Y., Zhao, A., Xing, Y., Huang, X., Zhou, L., et al. (2022) Comparison of Efficacy of Acupuncture-Related Therapy in the Treatment of Rheumatoid Arthritis: A Network Meta-Analysis of Randomized Controlled Trials. Frontiers in Immunology, 13, Article 829409.
https://doi.org/10.3389/fimmu.2022.829409
[3]  罗帅, 李小枫, 黄成, 等. 炎症因子在类风湿关节炎中的研究进展[J]. 中国药理学通报, 2022, 38(3): 330-338.
[4]  Kondo, N., Kuroda, T. and Kobayashi, D. (2021) Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. International Journal of Molecular Sciences, 22, Article 10922.
https://doi.org/10.3390/ijms222010922
[5]  Horiuchi, T., Mitoma, H., Harashima, S.-I., Tsukamoto, H. and Shimoda, T. (2010) Transmembrane TNF-α: Structure, Function and Interaction with Anti-TNF Agents. Rheumatology, 49, 1215-1228.
https://doi.org/10.1093/rheumatology/keq031
[6]  Jang, D., Lee, A., Shin, H., Song, H., Park, J., Kang, T., et al. (2021) The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22, Article 2719.
https://doi.org/10.3390/ijms22052719
[7]  McInnes, I.B. and Schett, G. (2017) Pathogenetic Insights from the Treatment of Rheumatoid Arthritis. The Lancet, 389, 2328-2337.
https://doi.org/10.1016/s0140-6736(17)31472-1
[8]  Finsterbusch, M., Voisin, M., Beyrau, M., Williams, T.J. and Nourshargh, S. (2014) Neutrophils Recruited by Chemoattractants in Vivo Induce Microvascular Plasma Protein Leakage through Secretion of TNF. Journal of Experimental Medicine, 211, 1307-1314.
https://doi.org/10.1084/jem.20132413
[9]  Kalliolias, G.D. and Ivashkiv, L.B. (2015) TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nature Reviews Rheumatology, 12, 49-62.
https://doi.org/10.1038/nrrheum.2015.169
[10]  Marahleh, A., Kitaura, H., Ohori, F., Kishikawa, A., Ogawa, S., Shen, W., et al. (2019) TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Frontiers in Immunology, 10, Article 2925.
https://doi.org/10.3389/fimmu.2019.02925
[11]  Singh, A.K., Fechtner, S., Chourasia, M., Sicalo, J. and Ahmed, S. (2018) Critical Role of Il-1α in Il-1β-Induced Inflammatory Responses: Cooperation with NF-κBP65 in Transcriptional Regulation. The FASEB Journal, 33, 2526-2536.
https://doi.org/10.1096/fj.201801513r
[12]  Nishimura, R., Hata, K., Takahata, Y., Murakami, T., Nakamura, E., Ohkawa, M., et al. (2020) Role of Signal Transduction Pathways and Transcription Factors in Cartilage and Joint Diseases. International Journal of Molecular Sciences, 21, Article 1340.
https://doi.org/10.3390/ijms21041340
[13]  Ridgley, L.A., Anderson, A.E. and Pratt, A.G. (2018) What Are the Dominant Cytokines in Early Rheumatoid Arthritis? Current Opinion in Rheumatology, 30, 207-214.
https://doi.org/10.1097/bor.0000000000000470
[14]  Zhang, F., Wei, K., Slowikowski, K., Fonseka, C.Y., Rao, D.A., Kelly, S., et al. (2019) Defining Inflammatory Cell States in Rheumatoid Arthritis Joint Synovial Tissues by Integrating Single-Cell Transcriptomics and Mass Cytometry. Nature Immunology, 20, 928-942.
https://doi.org/10.1038/s41590-019-0378-1
[15]  Lee, A., Qiao, Y., Grigoriev, G., Chen, J., Park-Min, K., Park, S.H., et al. (2013) Tumor Necrosis Factor α Induces Sustained Signaling and a Prolonged and Unremitting Inflammatory Response in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis & Rheumatism, 65, 928-938.
https://doi.org/10.1002/art.37853
[16]  Ogura, H., Murakami, M., Okuyama, Y., Tsuruoka, M., Kitabayashi, C., Kanamoto, M., et al. (2008) Interleukin-17 Promotes Autoimmunity by Triggering a Positive-Feedback Loop via Interleukin-6 Induction. Immunity, 29, 628-636.
https://doi.org/10.1016/j.immuni.2008.07.018
[17]  Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N.J. and Xu, J. (2018) Rheumatoid Arthritis: Pathological Mechanisms and Modern Pharmacologic Therapies. Bone Research, 6, Article No. 15.
https://doi.org/10.1038/s41413-018-0016-9
[18]  Elshabrawy, H.A., Chen, Z., Volin, M.V., Ravella, S., Virupannavar, S. and Shahrara, S. (2015) The Pathogenic Role of Angiogenesis in Rheumatoid Arthritis. Angiogenesis, 18, 433-448.
https://doi.org/10.1007/s10456-015-9477-2
[19]  Narazaki, M., Tanaka, T. and Kishimoto, T. (2017) The Role and Therapeutic Targeting of IL-6 in Rheumatoid Arthritis. Expert Review of Clinical Immunology, 13, 535-551.
https://doi.org/10.1080/1744666x.2017.1295850
[20]  Pandolfi, F., Franza, L., Carusi, V., Altamura, S., Andriollo, G. and Nucera, E. (2020) Interleukin-6 in Rheumatoid Arthritis. International Journal of Molecular Sciences, 21, Article 5238.
https://doi.org/10.3390/ijms21155238
[21]  Srirangan, S. and Choy, E.H. (2010) The Role of Interleukin 6 in the Pathophysiology of Rheumatoid Arthritis. Therapeutic Advances in Musculoskeletal Disease, 2, 247-256.
https://doi.org/10.1177/1759720x10378372
[22]  Chen, Z., Bozec, A., Ramming, A. and Schett, G. (2018) Anti-Inflammatory and Immune-Regulatory Cytokines in Rheumatoid Arthritis. Nature Reviews Rheumatology, 15, 9-17.
https://doi.org/10.1038/s41584-018-0109-2
[23]  Sandoghchian Shotorbani, S., Zhang, Y., Baidoo, S.E., et al. (2011) IL-4 Can Inhibit IL-17 Production in Collagen Induced Arthritis. Iranian Journal of Immunology, 8, 209-217.
[24]  Iwaszko, M., Biały, S. and Bogunia-Kubik, K. (2021) Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells, 10, Article 3000.
https://doi.org/10.3390/cells10113000
[25]  Dong, C., Fu, T., Ji, J., Li, Z. and Gu, Z. (2018) The Role of Interleukin-4 in Rheumatic Diseases. Clinical and Experimental Pharmacology and Physiology, 45, 747-754.
https://doi.org/10.1111/1440-1681.12946
[26]  Mollazadeh, H., Cicero, A.F.G., Blesso, C.N., Pirro, M., Majeed, M. and Sahebkar, A. (2017) Immune Modulation by Curcumin: The Role of Interleukin-10. Critical Reviews in Food Science and Nutrition, 59, 89-101.
https://doi.org/10.1080/10408398.2017.1358139
[27]  Baldini, C., Moriconi, F.R., Galimberti, S., Libby, P. and de Caterina, R. (2021) The JAK-STAT Pathway: An Emerging Target for Cardiovascular Disease in Rheumatoid Arthritis and Myeloproliferative Neoplasms. European Heart Journal, 42, 4389-4400.
https://doi.org/10.1093/eurheartj/ehab447
[28]  Mao, Y., Zhao, C., Leng, J., Leng, R., Ye, D., Zheng, S.G., et al. (2019) Interleukin-13: A Promising Therapeutic Target for Autoimmune Disease. Cytokine & Growth Factor Reviews, 45, 9-23.
https://doi.org/10.1016/j.cytogfr.2018.12.001
[29]  Wu, X. (2020) Innate Lymphocytes in Inflammatory Arthritis. Frontiers in Immunology, 11, Article 565275.
https://doi.org/10.3389/fimmu.2020.565275
[30]  Chou, P. and Chu, H. (2018) Clinical Efficacy of Acupuncture on Rheumatoid Arthritis and Associated Mechanisms: A Systemic Review. Evidence-Based Complementary and Alternative Medicine, 2018, Article 8596918.
https://doi.org/10.1155/2018/8596918
[31]  谈倩, 李佳, 李静, 等. 针刺对胶原诱导性关节炎大鼠胃肠动力的影响[J]. 世界中医药, 2022, 17(9): 1278-1282.
[32]  丁霞, 霍新慧, 昂沙尔·毕哈孜. 针灸对佐剂性关节炎大鼠滑膜组织自噬相关蛋白表达的影响[J]. 针灸临床杂志, 2022, 38(6): 51-55.
[33]  刘莉梅, 杜小正, 刘强, 等. 热补针法对类风湿关节炎寒证家兔膝关节滑膜组织炎性反应及滑膜细胞坏死性凋亡的影响[J]. 针刺研究, 2023, 48(5): 438-445.
[34]  井维尧, 杜小正, 苏成红, 等. 热补针法对类风湿关节炎寒证家兔滑膜炎性反应及miR-155/TLR4/NF-κB信号轴的影响[J]. 针刺研究, 2023, 48(2): 125-132.
[35]  苏成红, 杜小正, 方晓丽, 等. 热补针法对类风湿关节炎寒证模型家兔血清炎性因子及膝关节滑膜组织自噬的影响[J]. 针刺研究, 2022, 47(9): 769-777.
[36]  苏成红, 杜小正, 方晓丽, 等. 热补针法对类风湿关节炎寒证家兔模型膝关节滑膜组织TLR4-MyD88-ERK1/2信号通路的影响[J]. 北京中医药大学学报, 2022, 45(7): 745-754.
[37]  Yang, F., Gong, Y., Yu, N., Yao, L., Zhao, X., Hong, S., et al. (2021) ST36 Acupuncture Alleviates the Inflammation of Adjuvant-Induced Arthritic Rats by Targeting Monocyte/Macrophage Modulation. Evidence-Based Complementary and Alternative Medicine, 2021, 1-14.
https://doi.org/10.1155/2021/9430501
[38]  吴小丽, 贾文睿, 蒋海旭, 等. 电针对类风湿关节炎大鼠炎症因子TNF-α和IgM影响[J]. 辽宁中医药大学学报, 2021, 23(8): 74-78.
[39]  张广辉, 张超, 郭占非, 等. 甲氨蝶呤联合电针治疗类风湿关节炎模型大鼠[J]. 中国组织工程研究, 2020, 24(29): 4667-4672.
[40]  刘梨, 周巍, 黎铭玉, 等. 电针“足三里”“关元”穴对佐剂性关节炎大鼠滑膜细胞凋亡及相关凋亡蛋白表达的影响[J]. 针刺研究, 2022, 47(8): 696-702.
[41]  龙轶映, 张亮, 祁芳, 等. 电针对佐剂性关节炎大鼠滑膜组织中mTOR磷酸化水平的影响[J]. 湖南中医药大学学报, 2021, 41(12): 1881-1885.
[42]  刘梨, 张亮, 艾坤, 等. 艾灸对佐剂性关节炎大鼠足趾滑膜组织自噬和凋亡的影响[J]. 针刺研究, 2023, 48(3): 253-258.
[43]  路晓清, 刘华辉, 陈俊, 等. 艾灸对实验性RA家兔滑膜NLRP3炎性小体、Caspase-12表达的影响[J]. 世界科学技术-中医药现代化, 2023, 25(9): 2975-2982.
[44]  陈俊, 刘华辉, 路晓清, 等. 艾灸对实验性类风湿性关节炎家兔滑膜组织NLRP3炎性小体激活因素Cathepsin-B、ROS水平的影响[J]. 中华中医药学刊, 2022, 40(9): 152-157+278-280.
[45]  江彬, 高梓珊, 余芝, 等. 基于ROS-NLRP3通路探讨麦粒灸治疗佐剂性关节炎大鼠的作用及机制[J]. 南京中医药大学学报, 2023, 39(6): 548-556.
[46]  席东来, 杨慎峭, 王燚, 等. 艾灸在NLRP3炎性小体过表达下对佐剂性关节炎家兔膝关节滑膜组织JAK2-STAT3信号通路的影响[J]. 针刺研究, 2022, 47(12): 1095-1100.
[47]  陈俊, 路晓清, 席东来, 等. 艾灸对实验性RA家兔滑膜组织CXCL12/CXCR4-NF-κB信号通路的影响[J]. 时珍国医国药, 2023, 34(1): 248-253.
[48]  田时志, 吴瑕, 周晓奇, 等. 温针灸对类风湿性关节炎大鼠血清免疫球蛋白、IL-1、TNF-α的影响[J]. 云南中医学院学报, 2017, 40(6): 18-21.
[49]  蔡国伟, 李佳, 李静. 温针灸对类风湿性关节炎大鼠关节滑膜组织沉默信息调节因子2相关酶1和核转录因子-κB蛋白的影响[J]. 针刺研究, 2017, 42(5): 397-401.
[50]  陈莹, 王升旭, 杨路. 蜂针对类风湿关节炎大鼠CD40-CD40L的调控作用[J]. 中国老年学杂志, 2023, 43(10): 2472-2475.
[51]  陈莹, 杨路, 冼培凤, 等. 不同蜂针剂量治疗类风湿性关节炎大鼠的疗效研究[J]. 辽宁中医杂志, 2017, 44(2): 392-397+448.
[52]  陈莹, 杨路, 冼培凤, 等. 不同蜂针剂量对佐剂性类风湿性关节炎大鼠血清TNF-α、IL-1β、IL-6的影响[J]. 中华中医药学刊, 2017, 35(5): 1151-1154.
[53]  周颖芳, 林芷君, 龚宇, 等. 蜂针对胶原诱导性关节炎大鼠Th17/Treg细胞平衡的影响[J]. 中华中医药杂志, 2021, 36(6): 3549-3554.
[54]  Xu, Y., Hong, S., Zhao, X., Wang, S., Xu, Z., Ding, S., et al. (2018) Acupuncture Alleviates Rheumatoid Arthritis by Immune-Network Modulation. The American Journal of Chinese Medicine, 46, 997-1019.
https://doi.org/10.1142/s0192415x18500520
[55]  徐影杰. 热补针法干预类风湿关节炎模型大鼠Th1/Th2免疫失衡调节机制的实验研究[D]: [硕士学位论文]. 兰州: 甘肃中医药大学, 2023.
[56]  李文迅, 黄怡然, 雷林丹, 等. 电针、手针“足三里”对慢性关节炎大鼠血清炎性细胞因子含量的影响[J]. 针刺研究, 2012, 37(4): 271-276.
[57]  刘健, 韩明向, 张皖东, 等. 新风胶囊对佐剂性关节炎大鼠血清IL-1、TNFα、IL-4及IL-10的影响[J]. 安徽中医学院学报, 2002(2): 44-47.
[58]  邬继红, 马惠芳, 吕海波, 等. 不同针刺时间对致敏豚鼠血清IL-4和TNF影响的实验研究[J]. 北京中医药大学学报(中医临床版), 2006(5): 10-12.
[59]  朱俊, 陈潇毅, 李连波, 等. 血管活性肠肽介导电针对胶原诱导性关节炎大鼠促炎性细胞因子表达的影响[J]. 上海中医药杂志, 2015, 49(1): 72-76.
[60]  陈孟炼. 电针足三里及与雷公藤联用治疗慢性佐剂性关节炎模型大鼠的实验研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2011.
[61]  赵中亭, 赵怡坤, 陈家涟, 等. 基于“热证可灸”的不同悬灸法对热痹型类风湿关节炎大鼠证候特征的影响[J]. 中国针灸, 2023, 43(9): 1062-1069.
[62]  梁慧, 朱艳, 张敏, 等. 艾灸对佐剂性关节炎大鼠膝关节滑膜细胞超微结构及血清细胞因子的影响[J]. 中国针灸, 2023, 43(3): 317-321.
[63]  王成, 袁君, 郭彦玎, 等. 艾灸“足三里”对膝关节骨关节炎与类风湿性关节炎大鼠膝关节滑膜巨噬细胞极化的影响的比较研究[J]. 针刺研究, 2023, 48(10): 993-1000.
[64]  蔡国伟, 彭锐, 李佳, 等. 温针灸对类风湿关节炎大鼠关节软骨vimentin蛋白的影响[J]. 上海针灸杂志, 2017, 36(11): 1361-1366.
[65]  周颖芳, 林芷君, 龚宇, 等. 蜂针对Ⅱ型胶原诱导性关节炎大鼠Th1/Th2平衡的影响[J]. 中华中医药杂志, 2021, 36(5): 2539-2544.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133