|
铜渣中有价金属分离技术研究进展
|
Abstract:
铜渣是火法冶炼铜工艺中产生的主要固体废弃物,其中有价金属(铜、铁和锌)的综合提取不仅解决其因堆存带来的环境污染以及资源浪费,同时有效缓解我国矿产资源储量不足的压力。本文根据铜渣的工艺矿物学性质,明确铜、铁、锌的赋存形式,并对国内外现有回收有价金属的分离技术及最新研究进展进行了总结,分析了不同分离技术的优点和缺点。最后,针对现有技术存在的问题与缺陷,对未来铜渣回收技术的改善与创新进行了展望。
Copper slag is the main solid waste generated during copper smelting process. The comprehensive extraction of valuable metals (copper, iron and zinc) not only solves the environmental pollution and resource waste caused by stockpile of copper slag, but also effectively alleviates the pressure of insufficient mineral resources in China. The phase compositions of copper, iron and zinc are clarified from the technological mineralogy of copper slag. The existing separation technologies for recovering valuable metals are summarized, together with their latest research progress, and then the advantages and disadvantages of the technologies are analyzed. Finally, the improvement and innovation of future separation technology are prospected based on the problems and defects of existing technologies.
[1] | Schlesinger, M.E., King, M.J., Sole, K.C. and Davenport, W.G. (2011) Overview. In: Schlesinger, M.E., et al., Eds., Extractive Metallurgy of Copper, Elsevier, 1-12. https://doi.org/10.1016/b978-0-08-096789-9.10001-0 |
[2] | Gorai, B., Jana, R.K. and Premchand, (2003) Characteristics and Utilisation of Copper Slag—A Review. Resources, Conservation and Recycling, 39, 299-313. https://doi.org/10.1016/s0921-3449(02)00171-4 |
[3] | 迟晓鹏, 刘浩宇, 夏俊, 等. 铜渣贫化回收铜的研究现状及展望[J]. 金属矿山, 2024(1): 293-303. |
[4] | Wang, Z., Zhao, Z., Zhang, L., Liu, F., Peng, B., Chai, L., et al. (2019) Formation Mechanism of Zinc-Doped Fayalite (Fe2-xZnxSiO4) Slag during Copper Smelting. Journal of Hazardous Materials, 364, 488-498. https://doi.org/10.1016/j.jhazmat.2018.10.071 |
[5] | 包焕均, 张晓雪, 王洪阳, 等. 铜渣中铁硅分离的研究进展[J]. 有色金属科学与工程, 2021, 12(5): 30-38. |
[6] | 史公初, 廖亚龙, 苏博文, 等. 铜冶炼渣的矿物学特征及氧压酸浸[J]. 中国有色金属报, 2021, 31(3): 765-774. |
[7] | Yang, X., Zhang, J., Zhang, J., Hu, J., Li, J., Zhang, L., et al. (2018) Efficient Recovery of Copper and Cobalt from the Matte-Slag Mixture of ISA Furnace by Injection of Coke and Pyrite. Metallurgical and Materials Transactions B, 49, 3118-3126. https://doi.org/10.1007/s11663-018-1396-3 |
[8] | Li, Y., Yang, S.H., Tang, C.B., Chen, Y.M., He, J. and Tang, M.T. (2018) Reductive-Sulfurizing Smelting Treatment of Smelter Slag for Copper and Cobalt Recovery. Journal of Mining and Metallurgy, Section B: Metallurgy, 54, 73-79. https://doi.org/10.2298/jmmb160315049l |
[9] | 张林楠, 张力, 王明玉, 等. 铜渣贫化的选择性还原过程[J]. 有色金属, 2005, 57(3): 44-47. |
[10] | 孙铭良, 黄克雄. 含铜炉渣的火法贫化[J]. 有色金属(冶炼部分), 1992(4): 22-26, 32. |
[11] | 陈海清, 李沛兴, 刘水根, 等. 铜渣火法强化贫化工艺研究[J]. 湖南有色金属, 2006, 22(3): 16-18. |
[12] | 翟启林, 刘润清, 王琛, 等. 保温缓冷对铜渣结晶性能及铜浮选的影响[J]. 矿产保护与利用, 2019, 39(3): 75-80. |
[13] | 薛春华, 郑永兴, 董天龙. 铜渣浮选试验研究[J]. 矿产综合利用, 2017(4): 94-97. |
[14] | 李超, 罗溪梅, 韦达勇, 等.云南某低铜电炉渣综合回收铜的浮选试验研究[J]. 矿冶, 2023, 32(6): 27-34, 81. |
[15] | 刘凤霞, 李国栋. 某铜冶炼缓冷渣浮选回收铜的试验研究[J]. 矿山机械, 2020, 48(5): 59-62. |
[16] | 孙伟, 刘建远, 贺政, 等. 某铜渣浮选试验研究[J]. 矿产综合利用, 2019(2): 112-114. |
[17] | 余志翠. 浮选药剂Z200在某铜渣选矿中的应用研究[J]. 世界有色金属, 2019(2): 29-30. |
[18] | 吕兵超, 廖银英, 方娴, 等. 某铜渣浮选药剂优化试验研究[J]. 有色金属(选矿部分), 2018(6): 7-11. |
[19] | 黄自力, 刘缘缘, 秦庆伟, 等. 反射炉水淬渣提铜除铁研究[J]. 矿冶工程, 2012, 32(5): 82-85, 89. |
[20] | Seyrankaya, A. (2022) Pressure Leaching of Copper Slag Flotation Tailings in Oxygenated Sulfuric Acid Media. ACS Omega, 7, 35562-35574. https://doi.org/10.1021/acsomega.2c02903 |
[21] | Altundoǧan, H.S. and Tümen, F. (1997) Metal Recovery from Copper Converter Slag by Roasting with Ferric Sulphate. Hydrometallurgy, 44, 261-267. https://doi.org/10.1016/s0304-386x(96)00038-2 |
[22] | 徐家振, 金哲男, 焦万丽. 生物法贫化铜熔炼炉渣[J]. 有色矿冶, 2001, 17(1): 28-30. |
[23] | Potysz, A., Lens, P.N.L., van de Vossenberg, J., Rene, E.R., Grybos, M., Guibaud, G., et al. (2016) Comparison of Cu, Zn and Fe Bioleaching from Cu-Metallurgical Slags in the Presence of Pseudomonas Fluorescens and Acidithiobacillus Thiooxidans. Applied Geochemistry, 68, 39-52. https://doi.org/10.1016/j.apgeochem.2016.03.006 |
[24] | Muravyov, M.I., Fomchenko, N.V., Usoltsev, A.V., Vasilyev, E.A. and Kondrat’eva, T.F. (2012) Leaching of Copper and Zinc from Copper Converter Slag Flotation Tailings Using H2SO4 and Biologically Generated Fe2(SO4)3. Hydrometallurgy, 119, 40-46. https://doi.org/10.1016/j.hydromet.2012.03.001 |
[25] | Panda, S., Mishra, S., Rao, D.S., Pradhan, N., Mohapatra, U., Angadi, S., et al. (2015) Extraction of Copper from Copper Slag: Mineralogical Insights, Physical Beneficiation and Bioleaching Studies. Korean Journal of Chemical Engineering, 32, 667-676. https://doi.org/10.1007/s11814-014-0298-6 |
[26] | Schippers, A. (2017) Bioleaching of Copper Slag Material. Solid State Phenomena, 262, 61-64. https://doi.org/10.4028/www.scientific.net/ssp.262.61 |
[27] | 叶雪均, 秦华伟, 杨俊彦, 等. 从某混合铜渣中回收铜铁的试验研究[J]. 矿业研究与开发, 2013, 33(3): 46-49. |
[28] | 刘瑜, 吴彩斌, 雷存友, 等. 从冶炼渣选铜尾矿中综合回收铁新工艺研究[J]. 有色金属科学与工程, 2014, 5(5): 141-144. |
[29] | 曾军龙, 肖坤明. 分散剂用于炉渣中回收铁的研究[J]. 有色金属科学与工程, 2011, 2(6): 71-73. |
[30] | 王珩. 从炼铜厂炉渣中回收铜铁的研究[J]. 广东有色金属学报, 2003, 13(2): 83-88. |
[31] | 韩伟, 秦庆伟. 从炼铜炉渣中提取铜铁的研究[J]. 矿冶, 2009, 18(2): 9-12. |
[32] | 罗立群, 张晓雪, 王洪阳. 铜渣磁选过程中元素分布行为研究[J]. 中南大学学报(自然科学版), 2022, 53(8): 2843-2850. |
[33] | 张林楠. 铜渣中有价组分的选择性析出研究[D]: [博士学位论文]. 沈阳: 东北大学, 2006. |
[34] | 曹洪杨, 付念新, 张力, 等. 铜冶炼熔渣中铁组分的迁移与析出行为[J]. 过程工程学报, 2009, 9(2): 284-288. |
[35] | Jiang, P., Liu, J., Xiao, Y., Tan, X. and Liu, W. (2020) Recovery of Iron from Copper Slag via Modified Roasting in CO-CO2 Mixed Gas and Magnetic Separation. Journal of Iron and Steel Research International, 27, 796-806. https://doi.org/10.1007/s42243-020-00413-0 |
[36] | 黄自力, 罗凡, 李密, 等. 从炼铜水淬渣中回收铁的试验研究[J]. 矿产保护与利用, 2009(3): 51-54. |
[37] | Kim, B., Jo, S., Shin, D., Lee, J. and Jeong, S. (2013) A Physico-Chemical Separation Process for Upgrading Iron from Waste Copper Slag. International Journal of Mineral Processing, 124, 124-127. https://doi.org/10.1016/j.minpro.2013.05.009 |
[38] | Zhu, D., Xu, J., Guo, Z., Pan, J., Li, S., Pan, L., et al. (2020) Synergetic Utilization of Copper Slag and Ferruginous Manganese Ore via Co-Reduction Followed by Magnetic Separation Process. Journal of Cleaner Production, 250, Article ID: 119462. https://doi.org/10.1016/j.jclepro.2019.119462 |
[39] | Geng, C., Wang, H., Hu, W., Li, L. and Shi, C. (2017) Recovery of Iron and Copper from Copper Tailings by Coal-Based Direct Reduction and Magnetic Separation. Journal of Iron and Steel Research International, 24, 991-997. https://doi.org/10.1016/s1006-706x(17)30145-0 |
[40] | 杨慧芬, 景丽丽, 党春阁. 铜渣中铁组分的直接还原与磁选回收[J]. 中国有色金属报, 2011, 21(5): 1165-1170. |
[41] | 许冬, 春铁军, 陈锦安. 铜渣高温快速还原焙烧-磁选回收铁的研究[J]. 矿冶工程, 2017, 37(1): 89-91, 95. |
[42] | 刘凤霞, 李国栋. 铜尾渣直接还原焙烧-磁选回收铁的试验[J]. 矿山机械, 2019, 47(11): 45-48. |
[43] | 王爽, 倪文, 王长龙, 等. 铜尾渣深度还原回收铁工艺研究[J]. 金属矿山, 2014(3): 156-160. |
[44] | Li, K., Ping, S., Wang, H. and Ni, W. (2013) Recovery of Iron from Copper Slag by Deep Reduction and Magnetic Beneficiation. International Journal of Minerals, Metallurgy, and Materials, 20, 1035-1041. https://doi.org/10.1007/s12613-013-0831-3 |
[45] | 赵凯, 宫晓然, 李杰, 等. 直接还原法回收铜渣中铁、铜和锌的热力学[J]. 环境工程学报, 2016, 10(5): 2638-2646. |
[46] | 聂溪莹, 肖绎. 模拟回转窑工艺研究铜渣中Fe、Pb、Zn的提取[J]. 工业加热, 2015, 44(2): 71-74. |
[47] | 曹志成, 孙体昌, 薛逊, 等. 无烟煤转底炉直接还原铜渣回收铁、锌研究[J]. 矿冶工程, 2017, 37(2): 74-78. |
[48] | 刘占华, 陈文亮, 丁银贵, 等. 铜渣转底炉直接还原回收铁锌工艺研究[J]. 金属矿山, 2019(5): 183-187. |
[49] | Wu, L., Li, H., Liu, K., Mei, H., Xia, Y. and Dong, Y. (2023) An Efficient Approach to Utilize Copper Smelting Slag: Separating Nonferrous Metals and Reducing Iron Oxide at High Temperature. Waste Management, 172, 182-191. https://doi.org/10.1016/j.wasman.2023.10.017 |
[50] | 张倍恺. 铜熔炼选铜尾渣氯化焙烧回收锌铅研究[D]: [硕士学位论文]. 长沙: 中南大学, 2022. |
[51] | 李涛, 佘世杰, 刘晨. 从铜渣中回收铜锌的试验研究[J]. 矿冶, 2019, 28(6): 49-53. |
[52] | Nadirov, R.K., Syzdykova, L.I., Zhussupova, A.K. and Usserbaev, M.T. (2013) Recovery of Value Metals from Copper Smelter Slag by Ammonium Chloride Treatment. International Journal of Mineral Processing, 124, 145-149. https://doi.org/10.1016/j.minpro.2013.07.009 |
[53] | 陈茂生, 朱心明, 许燕, 等. 除硅铜冶炼水淬渣的硫酸化浸出实验[J]. 材料导报, 2014, 28(18): 86-89. |
[54] | 纪武仁, 李玉. 锌冶炼铜渣提取铜、锌、镉的试验研究[J]. 甘肃冶金, 2012, 34(4): 53-55. |