全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微藻水热液化过程中氮元素的迁移转化研究
The Migration and Transformation Pathways of the Nitrogen Element during the Hydrothermal Liquefaction of Microalgae

DOI: 10.12677/hjcet.2025.151003, PP. 21-34

Keywords: 水热液化,氮元素,氨基酸,含氮化合物,生物油
Hydrothermal Liquefaction (HTL)
, Nitrogen Element, Amino Acid, Nitrogen-Containing Compound, Bio-Oil

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于藻类的水热液化产油技术被认为是潜在的微藻能源化利用的重要技术之一。而微藻基生物油中的含氮化合物,特别是含氮杂环化合物的种类分布和含量决定后续提质工艺的难度和能耗。因此,本文综述了微藻水热液化过程中氮元素的来源及其迁移转化机理。发现氮元素来自于微藻原料中的蛋白质(氨基酸)、磷脂以及色素,主要来自氨基酸。氨基酸在水热过程中发生复杂的化学反应,包括氨基酸分子内的脱羧基、脱氨基、脱水、脱硫、内环化、内酰胺、反羟醛缩合和断链反应,两个氨基酸分子间的二聚或聚合反应,氨基酸与还原糖的美拉德反应,氨基酸与脂肪酸的氨解反应,以及不饱和中间产物之间的聚合或缩合反应,进而产生氨氮、胺类、酰胺类、哌嗪二酮类和含氮杂环等多种含氮化合物。这些含氮化合物主要分布在生物油和水相产物中,生物油中氮元素存在形式主要是杂环氮、胺类氮和腈类氮三类,而水相氮主要是氨氮、杂环氮和酰胺类氮三类。水相氮和油相氮之间存在明显的迁移转化,通过调控水热液化过程中水相氮组成,将影响微藻水热液化所产生物油的氮元素种类和含量。
The bio-oil derived from hydrothermal liquefaction of microalgae is recognized as one of the significant potential techniques for the energy-oriented utilization. The variety and content of nitrogen-containing compounds, particularly nitrogen-containing heterocyclic compounds, in bio-oil determine the difficulty and energy consumption of subsequent upgrading processes. Therefore, this paper reviews the sources of the nitrogen element and its migration and transformation mechanisms during the hydrothermal liquefaction of microalgae. It is discovered that nitrogen primarily originates from proteins or amino acids, phospholipids, and pigments in feedstock, with amino acids being the main contributor. During the hydrothermal process, amino acids undergo complex chemical reactions, including decarboxylation, deamination, dehydration, desulfurization, intramolecular cyclization, lactamization, retro-aldol condensation, and chain scission within amino acid molecule, dimerization or polymerization between two amino acid molecules, Maillard reactions between amino acids and reducing sugars, ammonolysis reactions between amino acids and fatty acids, as well as polymerization or condensation reactions among unsaturated intermediates. These reactions lead to the formation of various nitrogen-containing compounds such as ammonia, amines, amides, piperazine-2,3-diones, and nitrogen-containing heterocycles. These nitrogen-containing compounds are predominantly distributed in the bio-oil and aqueous phase products. In bio-oil, the nitrogen element exists primarily in the forms of heterocyclic nitrogen, amine nitrogen, and nitrile nitrogen, while in the aqueous phase, it is mainly ammonia nitrogen, heterocyclic nitrogen, and amide nitrogen. There is a notable migration and transformation of nitrogen element between the aqueous and oil phases. By regulating the composition of nitrogen element in aqueous phase during the hydrothermal liquefaction process, the types and content of the nitrogen element in the bio-oil produced from microalgae

References

[1]  Djandja, O.S., Wang, Z., Chen, L., Qin, L., Wang, F., Xu, Y., et al. (2020) Progress in Hydrothermal Liquefaction of Algal Biomass and Hydrothermal Upgrading of the Subsequent Crude Bio-Oil: A Mini Review. Energy & Fuels, 34, 11723-11751.
https://doi.org/10.1021/acs.energyfuels.0c01973
[2]  Bassoli, S.C., da Fonseca, Y.A., Wandurraga, H.J.L., Baeta, B.E.L. and de Souza Amaral, M. (2023) Research Progress, Trends, and Future Prospects on Hydrothermal Liquefaction of Algae for Biocrude Production: A Bibliometric Analysis. Biomass Conversion and Biorefinery, 2, Article ID: 100819.
https://doi.org/10.1007/s13399-023-03905-7
[3]  Lu, J., Watson, J., Liu, Z. and Wu, Y. (2022) Elemental Migration and Transformation during Hydrothermal Liquefaction of Biomass. Journal of Hazardous Materials, 423, Article ID: 126961.
https://doi.org/10.1016/j.jhazmat.2021.126961
[4]  Watson, J., Wang, T., Si, B., Chen, W., Aierzhati, A. and Zhang, Y. (2020) Valorization of Hydrothermal Liquefaction Aqueous Phase: Pathways towards Commercial Viability. Progress in Energy and Combustion Science, 77, Article ID: 100819.
https://doi.org/10.1016/j.pecs.2019.100819
[5]  Mathimani, T. and Mallick, N. (2019) A Review on the Hydrothermal Processing of Microalgal Biomass to Bio-Oil—Knowledge Gaps and Recent Advances. Journal of Cleaner Production, 217, 69-84.
https://doi.org/10.1016/j.jclepro.2019.01.129
[6]  Sajjadi, B., Chen, W., Raman, A.A.A. and Ibrahim, S. (2018) Microalgae Lipid and Biomass for Biofuel Production: A Comprehensive Review on Lipid Enhancement Strategies and Their Effects on Fatty Acid Composition. Renewable and Sustainable Energy Reviews, 97, 200-232.
https://doi.org/10.1016/j.rser.2018.07.050
[7]  Gollakota, A.R.K., Kishore, N. and Gu, S. (2018) A Review on Hydrothermal Liquefaction of Biomass. Renewable and Sustainable Energy Reviews, 81, 1378-1392.
https://doi.org/10.1016/j.rser.2017.05.178
[8]  Hu, Y., Gong, M., Feng, S., Xu, C. and Bassi, A. (2019) A Review of Recent Developments of Pre-Treatment Technologies and Hydrothermal Liquefaction of Microalgae for Bio-Crude Oil Production. Renewable and Sustainable Energy Reviews, 101, 476-492.
https://doi.org/10.1016/j.rser.2018.11.037
[9]  Gu, Y., Zhang, X., Deal, B. and Han, L. (2019) Biological Systems for Treatment and Valorization of Wastewater Generated from Hydrothermal Liquefaction of Biomass and Systems Thinking: A Review. Bioresource Technology, 278, 329-345.
https://doi.org/10.1016/j.biortech.2019.01.127
[10]  Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., et al. (2016) Quantitative Characterization of the Aqueous Fraction from Hydrothermal Liquefaction of Algae. Biomass and Bioenergy, 93, 122-130.
https://doi.org/10.1016/j.biombioe.2016.07.010
[11]  Zhao, B., Wang, Z., Liu, Z. and Yang, X. (2016) Two-Stage Upgrading of Hydrothermal Algae Biocrude to Kerosene-Range Biofuel. Green Chemistry, 18, 5254-5265.
https://doi.org/10.1039/c6gc01413e
[12]  Leng, L., Zhang, W., Peng, H., Li, H., Jiang, S. and Huang, H. (2020) Nitrogen in Bio-Oil Produced from Hydrothermal Liquefaction of Biomass: A Review. Chemical Engineering Journal, 401, Article ID: 126030.
https://doi.org/10.1016/j.cej.2020.126030
[13]  Leng, L., Zhou, J., Li, T., Vlaskin, M., Zhan, H., Peng, H., et al. (2023) Nitrogen Heterocycles in Bio-Oil Produced from Hydrothermal Liquefaction of Biomass: A Review. Fuel, 335, Article ID: 126995.
https://doi.org/10.1016/j.fuel.2022.126995
[14]  Toor, S.S., Rosendahl, L. and Rudolf, A. (2011) Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy, 36, 2328-2342.
https://doi.org/10.1016/j.energy.2011.03.013
[15]  Matricon, L., Roubaud, A., Haarlemmer, G. and Geantet, C. (2023) The Challenge of Nitrogen Compounds in Hydrothermal Liquefaction of Algae. The Journal of Supercritical Fluids, 196, Article ID: 105867.
https://doi.org/10.1016/j.supflu.2023.105867
[16]  Gu, X., Martinez-Fernandez, J.S., Pang, N., Fu, X. and Chen, S. (2020) Recent Development of Hydrothermal Liquefaction for Algal Biorefinery. Renewable and Sustainable Energy Reviews, 121, Article ID: 109707.
https://doi.org/10.1016/j.rser.2020.109707
[17]  Ağbulut, Ü., Sirohi, R., Lichtfouse, E., Chen, W., Len, C., Show, P.L., et al. (2023) Microalgae Bio-Oil Production by Pyrolysis and Hydrothermal Liquefaction: Mechanism and Characteristics. Bioresource Technology, 376, Article ID: 128860.
https://doi.org/10.1016/j.biortech.2023.128860
[18]  Körner, P. (2021) Hydrothermal Degradation of Amino Acids. ChemSusChem, 14, 4947-4957.
https://doi.org/10.1002/cssc.202101487
[19]  Ravber, M., Knez, Ž. and Škerget, M. (2015) Hydrothermal Degradation of Fats, Carbohydrates and Proteins in Sunflower Seeds after Treatment with Subcritical Water. Chemical and Biochemical Engineering Quarterly, 29, 351-355.
https://doi.org/10.15255/cabeq.2015.2193
[20]  刘慧慧. 环境型微藻水热液化及其氮元素演化规律研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2021.
[21]  Martinez-Fernandez, J.S. and Chen, S. (2017) Sequential Hydrothermal Liquefaction Characterization and Nutrient Recovery Assessment. Algal Research, 25, 274-284.
https://doi.org/10.1016/j.algal.2017.05.022
[22]  袁松, 黄艳琴, 刘华财, 袁洪友, 庄修政, 阴秀丽, 吴创之. 低温水热预处理对高蛋白小球藻N分布和藻渣热解特性的影响[J]. 燃料化学学报, 2019, 47(1): 39-52.
[23]  Basar, I.A., Liu, H., Carrere, H., Trably, E. and Eskicioglu, C. (2021) A Review on Key Design and Operational Parameters to Optimize and Develop Hydrothermal Liquefaction of Biomass for Biorefinery Applications. Green Chemistry, 23, 1404-1446.
https://doi.org/10.1039/d0gc04092d
[24]  Jatoi, A.S., Shah, A.A., Ahmed, J., Rehman, S., Sultan, S.H., Shah, A.K., et al. (2022) Hydrothermal Liquefaction of Lignocellulosic and Protein-Containing Biomass: A Comprehensive Review. Catalysts, 12, Article 1621.
https://doi.org/10.3390/catal12121621
[25]  Gai, C., Zhang, Y., Chen, W., Zhang, P. and Dong, Y. (2015) An Investigation of Reaction Pathways of Hydrothermal Liquefaction Using Chlorella pyrenoidosa and Spirulina platensis. Energy Conversion and Management, 96, 330-339.
https://doi.org/10.1016/j.enconman.2015.02.056
[26]  Liu, H., Basar, I.A., Lyczko, N., Nzihou, A. and Eskicioglu, C. (2022) Incorporating Hydrothermal Liquefaction into Wastewater Treatment—Part I: Process Optimization for Energy Recovery and Evaluation of Product Distribution. Chemical Engineering Journal, 449, Article ID: 137838.
https://doi.org/10.1016/j.cej.2022.137838
[27]  Liu, H., Lyczko, N., Nzihou, A. and Eskicioglu, C. (2023) Incorporating Hydrothermal Liquefaction into Wastewater Treatment—Part II: Characterization, Environmental Impacts, and Potential Applications of Hydrochar. Journal of Cleaner Production, 383, Article ID: 135398.
https://doi.org/10.1016/j.jclepro.2022.135398
[28]  Zhang, C., Tang, X., Sheng, L. and Yang, X. (2016) Enhancing the Performance of Co-Hydrothermal Liquefaction for Mixed Algae Strains by the Maillard Reaction. Green Chemistry, 18, 2542-2553.
https://doi.org/10.1039/c5gc02953h
[29]  Sheehan, J.D. and Savage, P.E. (2020) Reaction Pathways and Kinetics of Tryptophan in Hot, Compressed Water. Chemical Engineering Journal, 390, Article ID: 124600.
https://doi.org/10.1016/j.cej.2020.124600
[30]  Tressl, R., Rewicki, D., Helak, B. and Kamperschroer, H. (1985) Formation of Pyrrolidines and Piperidines on Heating L-Proline with Reducing Sugars. Journal of Agricultural and Food Chemistry, 33, 924-928.
https://doi.org/10.1021/jf00065a037
[31]  Sohn, M. and Ho, C. (1995) Ammonia Generation during Thermal Degradation of Amino Acids. Journal of Agricultural and Food Chemistry, 43, 3001-3003.
https://doi.org/10.1021/jf00060a001
[32]  Li, J. and Brill, T.B. (2003) Spectroscopy of Hydrothermal Reactions 25: Kinetics of the Decarboxylation of Protein Amino Acids and the Effect of Side Chains on Hydrothermal Stability. The Journal of Physical Chemistry A, 107, 5987-5992.
https://doi.org/10.1021/jp0224766
[33]  Samanmulya, T., Farobie, O. and Matsumura, Y. (2017) Gasification Characteristics of Histidine and 4-Methylimidazole under Supercritical Water Conditions. Biomass Conversion and Biorefinery, 7, 487-494.
https://doi.org/10.1007/s13399-017-0242-1
[34]  Powell, T., Bowra, S. and Cooper, H.J. (2017) Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications. Journal of the American Society for Mass Spectrometry, 28, 1775-1786.
https://doi.org/10.1007/s13361-017-1676-1
[35]  Sheng, L., Wang, X. and Yang, X. (2018) Prediction Model of Biocrude Yield and Nitrogen Heterocyclic Compounds Analysis by Hydrothermal Liquefaction of Microalgae with Model Compounds. Bioresource Technology, 247, 14-20.
https://doi.org/10.1016/j.biortech.2017.08.011
[36]  Fan, Y., Hornung, U., Dahmen, N. and Kruse, A. (2018) Hydrothermal Liquefaction of Protein-Containing Biomass: Study of Model Compounds for Maillard Reactions. Biomass Conversion and Biorefinery, 8, 909-923.
https://doi.org/10.1007/s13399-018-0340-8
[37]  Qiu, Y., Aierzhati, A., Cheng, J., Guo, H., Yang, W. and Zhang, Y. (2019) Biocrude Oil Production through the Maillard Reaction between Leucine and Glucose during Hydrothermal Liquefaction. Energy & Fuels, 33, 8758-8765.
https://doi.org/10.1021/acs.energyfuels.9b01875
[38]  Zhao, B., Wang, X. and Yang, X. (2015) Co-Pyrolysis Characteristics of Microalgae Isochrysis and Chlorella: Kinetics, Biocrude Yield and Interaction. Bioresource Technology, 198, 332-339.
https://doi.org/10.1016/j.biortech.2015.09.021
[39]  Jarvis, J.M., Sudasinghe, N.M., Albrecht, K.O., Schmidt, A.J., Hallen, R.T., Anderson, D.B., et al. (2016) Impact of Iron Porphyrin Complexes When Hydroprocessing Algal HTL Biocrude. Fuel, 182, 411-418.
https://doi.org/10.1016/j.fuel.2016.05.107
[40]  Changi, S., Brown, T.M. and Savage, P.E. (2012) Reaction Kinetics and Pathways for Phytol in High-Temperature Water. Chemical Engineering Journal, 189, 336-345.
https://doi.org/10.1016/j.cej.2012.02.021
[41]  Jiang, J., Serago, J.J., Torres, K., Rapp, E. and Savage, P.E. (2020) Fate of Iron during Hydrothermal Liquefaction of Hemin. The Journal of Supercritical Fluids, 157, Article ID: 104705.
https://doi.org/10.1016/j.supflu.2019.104705
[42]  Zhuang, X., Huang, Y., Song, Y., Zhan, H., Yin, X. and Wu, C. (2017) The Transformation Pathways of Nitrogen in Sewage Sludge during Hydrothermal Treatment. Bioresource Technology, 245, 463-470.
https://doi.org/10.1016/j.biortech.2017.08.195
[43]  Leng, L., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., et al. (2020) Nitrogen Containing Functional Groups of Biochar: An Overview. Bioresource Technology, 298, Article ID: 122286.
https://doi.org/10.1016/j.biortech.2019.122286
[44]  Taghipour, A., Hornung, U., Ramirez, J.A., Brown, R.J. and Rainey, T.J. (2021) Aqueous Phase Recycling in Catalytic Hydrothermal Liquefaction for Algal Biomass and the Effect on Elemental Accumulation and Energy Efficiency. Journal of Cleaner Production, 289, Article ID: 125582.
https://doi.org/10.1016/j.jclepro.2020.125582
[45]  Leng, L., Li, J., Wen, Z. and Zhou, W. (2018) Use of Microalgae to Recycle Nutrients in Aqueous Phase Derived from Hydrothermal Liquefaction Process. Bioresource Technology, 256, 529-542.
https://doi.org/10.1016/j.biortech.2018.01.121
[46]  高传瑞, 田纯焱, 李志合, 易维明, 袁巧霞, 付鹏, 张玉春, 李治宇. 生物原油炼制: 副产物内循环及水热自催化[J]. 化工进展, 2021, 40(10): 5348-5359.
[47]  Biller, P., Madsen, R.B., Klemmer, M., Becker, J., Iversen, B.B. and Glasius, M. (2016) Effect of Hydrothermal Liquefaction Aqueous Phase Recycling on Bio-Crude Yields and Composition. Bioresource Technology, 220, 190-199.
https://doi.org/10.1016/j.biortech.2016.08.053
[48]  Hu, Y., Feng, S., Yuan, Z., Xu, C. and Bassi, A. (2017) Investigation of Aqueous Phase Recycling for Improving Bio-Crude Oil Yield in Hydrothermal Liquefaction of Algae. Bioresource Technology, 239, 151-159.
https://doi.org/10.1016/j.biortech.2017.05.033
[49]  Leng, S., Leng, L., Chen, L., Chen, J., Chen, J. and Zhou, W. (2020) The Effect of Aqueous Phase Recirculation on Hydrothermal Liquefaction/carbonization of Biomass: A Review. Bioresource Technology, 318, Article ID: 124081.
https://doi.org/10.1016/j.biortech.2020.124081
[50]  Bao, T., Shao, Y., Zhang, H. and Zhu, J. (2022) Nitrogen Distribution in the Products from the Hydrothermal Liquefaction of Chlorella Sp. and Spirulina Sp. Frontiers of Chemical Science and Engineering, 16, 985-995.
https://doi.org/10.1007/s11705-021-2126-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133