全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于学习通的快速考勤之《电磁场理论》教学实践
Teaching Practice of “Electromagnetic Field Theory” for Quick Attendance Based on Xuexitong

DOI: 10.12677/ae.2025.151031, PP. 218-222

Keywords: 课堂考勤,高效快速,低成本
Class Attendance
, Efficient and Fast, Low Cost

Full-Text   Cite this paper   Add to My Lib

Abstract:

因教学要求,常常需要课堂考勤。在教学资源有限的情况下,若进行考勤则需要花费大量的时间,进而压缩授课时间,若不考勤又对学生难以形成强有力的课堂管控。如何解决此问题呢?本文根据教学实践情况,经过3年的探索,最终提出了一种基于学习通的2分钟快速考勤办法。其优点有:(1) 可以随时、快速发布考勤信息,以获得到课情况;(2) 可以随时查阅考勤记录,以便关注学习不积极的学生,进而进行谈话教育,及教学调整。这些优点可以帮助一线教师:有效管控课堂、安心课堂教学、获取需要重点关注的学生名单。
Due to teaching requirements, classroom attendance is often necessary. In the case of limited teaching resources, taking attendance would consume a significant amount of time, thereby reducing the teaching time. However, if attendance is not taken, it is difficult to achieve strong classroom management and control over the students. How can this issue be resolved? Based on teaching practices and after three years of exploration, this article ultimately proposes a 2-minute quick attendance method based on the Xuexitong. Its advantages include: (1) the ability to quickly publish attendance information at any time to ascertain students’ presence; (2) the ability to review attendance records at any time to pay attention to students who are not actively engaged in learning, which can lead to educational discussions and adjustments in teaching. These advantages can assist front-line teachers in effectively managing and controlling the classroom, teaching with peace of mind, and obtaining the list of students who need special attention.

References

[1]  宋咏春. 线上教学实时考勤系统开发——以雨课堂为例[J]. 中国信息技术教育, 2024(20): 85-88.
[2]  李龙杰, 张云鹏, 王栎喜, 等. 基于树莓派和声纹识别算法的课堂考勤系统[J]. 物联网技术, 2024, 14(2): 72-75.
[3]  唐琳. 基于人脸识别技术的学生课堂考勤管理系统的设计与实现[J]. 数字技术与应用, 2023, 41(9): 208-210.
[4]  董亚蕾, 张师宁, 武旭聪. 基于小人脸识别的高校课堂考勤系统研究[J]. 现代信息科技, 2023, 7(12): 62-65.
[5]  裴浩. 基于Python + OpenCV的课堂人脸签到微型系统[J]. 信息技术与信息化, 2023(1): 181-184.
[6]  宋亚锋, 钟锐, 王晨. 基于多摄像头的无感知实时课堂考勤方法[J]. 赣南师范大学学报, 2022, 43(6): 89-94.
[7]  李春梅, 张扬, 陈静雪, 等. 人脸识别与高校学生考勤系统[J]. 科技视界, 2022(28): 25-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133