全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum Circuit Complexity as a Physical Observable

DOI: 10.4236/jamp.2025.131004, PP. 87-137

Keywords: Quantum Circuit Complexity, Physical Observables, Operator Theory, Quantum Gravity, Quantum Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work proposes quantum circuit complexity—the minimal number of elementary operations needed to implement a quantum transformation—be established as a legitimate physical observable. We prove that circuit complexity satisfies all requirements for physical observables, including self-adjointness, gauge invariance, and a consistent measurement theory with well-defined uncertainty relations. We develop complete protocols for measuring complexity in quantum systems and demonstrate its connections to gauge theory and quantum gravity. Our results suggest that computational requirements may constitute physical laws as fundamental as energy conservation. This framework grants insights into the relationship between quantum information, gravity, and the emergence of spacetime geometry while offering practical methods for experimental verification. Our results indicate that the physical universe may be governed by both energetic and computational constraints, with profound implications for our understanding of fundamental physics.

References

[1]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[2]  Wigner, E.P. (1959) Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press.
[3]  Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics, Vol. I: Functional Analysis. Academic Press.
[4]  Weinberg, S. (1995) The Quantum Theory of Fields. Cambridge University Press.
https://doi.org/10.1017/cbo9781139644167
[5]  Haag, R. and Kastler, D. (1964) An Algebraic Approach to Quantum Field Theory. Journal of Mathematical Physics, 5, 848-861.
https://doi.org/10.1063/1.1704187
[6]  Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43.
https://doi.org/10.1002/prop.201500092
[7]  Brown, A.R., et al. (2018) Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes. Physical Review Letters, 120, Article ID: 121601.
[8]  Maldacena, J. and Susskind, L. (2016) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 64, 44-57.
[9]  Nielsen, M.A. (2006) A Geometric Approach to Quantum Circuit Lower Bounds. Quantum Information and Computation, 6, 213-262.
https://doi.org/10.26421/qic6.3-2
[10]  Nielsen, M.A., Dowling, M.R., Gu, M. and Doherty, A.C. (2006) Quantum Computation as Geometry. Science, 311, 1133-1135.
https://doi.org/10.1126/science.1121541
[11]  Witten, E. (1998) Anti De Sitter Space and Holography. Advances in Theoretical and Mathematical Physics, 2, 253-291.
https://doi.org/10.4310/atmp.1998.v2.n2.a2
[12]  Susskind, L. and Zhao, Y. (2014) Switchbacks and the Bridge to Nowhere.
[13]  Stanford, D. and Susskind, L. (2014) Complexity and Shock Wave Geometries. Physical Review D, 90, Article ID: 126007.
https://doi.org/10.1103/physrevd.90.126007
[14]  Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. General Relativity and Gravitation, 42, 2323-2329.
https://doi.org/10.1007/s10714-010-1034-0
[15]  Ryu, S. and Takayanagi, T. (2006) Holographic Derivation of Entanglement Entropy from the Anti-de Sitter Space/Conformal Field Theory Correspondence. Physical Review Letters, 96, Article ID: 181602.
https://doi.org/10.1103/physrevlett.96.181602
[16]  Susskind, L. (2019) Black Holes and Complexity: Inside the Horizon. Springer.
[17]  Davies, E.B. and Lewis, J.T. (1970) An Operational Approach to Quantum Probability. Communications in Mathematical Physics, 17, 239-260.
https://doi.org/10.1007/bf01647093
[18]  Wightman, A.S. (1956) Quantum Field Theory in Terms of Vacuum Expectation Values. Physical Review, 101, 860-866.
https://doi.org/10.1103/physrev.101.860
[19]  Strocchi, F. (1967) Complex Coordinates and Quantum Mechanics. Reviews of Modern Physics, 39, 451-461.
[20]  Reed, M. and Simon, B. (1978) Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators. Academic Press.
[21]  Kato, T. (1995) Perturbation Theory for Linear Operators. Springer-Verlag.
[22]  Bargmann, V. (1954) On Unitary Ray Representations of Continuous Groups. The Annals of Mathematics, 59, 1-46.
https://doi.org/10.2307/1969831
[23]  Strocchi, F. (1978) Gauge Problem in Quantum Field Theory. Physical Review D, 17, 2010-2021.
[24]  Kraus, K. (1983) States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer-Verlag.
[25]  Ozawa, M. (2004) Uncertainty Relations for Joint Measurements of Noncommuting Observables. Physics Letters A, 320, 367-374.
https://doi.org/10.1016/j.physleta.2003.12.001
[26]  Hooft, G. (1971) Renormalizable Lagrangians for Massive Yang-Mills Fields. Nuclear Physics B, 35, 167-188.
https://doi.org/10.1016/0550-3213(71)90139-8
[27]  Hooft, G. (1974) A Planar Diagram Theory for Strong Interactions. Nuclear Physics B, 72, 461-473.
https://doi.org/10.1016/0550-3213(74)90154-0
[28]  Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195.
https://doi.org/10.1103/physrev.96.191
[29]  Kitaev, A.Y. (1997) Quantum Computations: Algorithms and Error Correction. Russian Mathematical Surveys, 52, 1191-1249.
https://doi.org/10.1070/rm1997v052n06abeh002155
[30]  Nielsen, M.A. (2007) A Geometric Approach to Quantum Circuit Lower Bounds.
[31]  Preskill, J. (1998) Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology.
[32]  Aharonov, D. and Ben-Or, M. (2008) Fault-Tolerant Quantum Computation with Constant Error Rate. SIAM Journal on Computing, 38, 1207-1282.
https://doi.org/10.1137/s0097539799359385
[33]  Friedrichs, K. (1934) Spectral Theory of Operators in Hilbert Space. Mathematische Annalen, 109, 465-487.
https://doi.org/10.1007/bf01449150
[34]  Becchi, C., Rouet, A. and Stora, R. (1976) Renormalization of Gauge Theories. Annals of Physics, 98, 287-321.
https://doi.org/10.1016/0003-4916(76)90156-1
[35]  Holevo, A.S. (2001) Statistical Structure of Quantum Theory. Springer-Verlag.
[36]  Robertson, H.P. (1929) The Uncertainty Principle. Physical Review, 34, 163-164.
https://doi.org/10.1103/physrev.34.163
[37]  Witten, E. (1982) Supersymmetry and Morse Theory. Journal of Differential Geometry, 17, 661-692.
https://doi.org/10.4310/jdg/1214437492
[38]  Jaffe, A. and Witten, E. (2000) Quantum Yang-Mills Theory. In: The Millennium Prize Problems, Clay Mathematics Institute, 129-152.
[39]  Reed, M. and Simon, B. (1975) Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness. Academic Press.
[40]  Dunford, N. and Schwartz, J.T. (1963) Linear Operators, Part II: Spectral Theory. Interscience Publishers.
[41]  Atiyah, M.F. (1978) Geometry of Yang-Mills Fields. Scuola Normale Superiore.
[42]  Ludwig, G. (1983) Foundations of Quantum Mechanics I. Springer-Verlag.
[43]  Haag, R. (1992) Local Quantum Physics: Fields, Particles, Algebras. Springer-Verlag.
[44]  Lloyd, S. (2000) Ultimate Physical Limits to Computation. Nature, 406, 1047-1054.
https://doi.org/10.1038/35023282
[45]  Lloyd, S. (2006) Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Knopf.
[46]  Stone, M.H. (1930) Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. Proceedings of the National Academy of Sciences, 16, 172-175.
https://doi.org/10.1073/pnas.16.2.172
[47]  Schrödinger, E. (1930) Zum Heisenbergschen Unschärfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 296-303.
[48]  Wheeler, J.A. (1990) Information, Physics, Quantum: The Search for Links. In: Zurek, W.H., Ed., Complexity, Entropy, and the Physics of Information, The SFI Press, 3-28.
[49]  Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Uni-versal Quantum Computer. Proceedings of the Royal Society A, 400, 97-117.
[50]  Hooft, G. (1999) Quantum Gravity as a Dissipative Deterministic System. Classical and Quantum Gravity, 16, 3263-3279.
https://doi.org/10.1088/0264-9381/16/10/316
[51]  Rovelli, C. (1996) Relational Quantum Mechanics. International Journal of Theoretical Physics, 35, 1637-1678.
https://doi.org/10.1007/bf02302261
[52]  Witten, E. (1989) Quantum Field Theory and the Jones Polynomial. Communications in Mathematical Physics, 121, 351-399.
https://doi.org/10.1007/bf01217730
[53]  Araki, H. (1999) Mathematical Theory of Quantum Fields. Oxford University Press.
[54]  Thirring, W. (2002) Quantum Mathematical Physics: Atoms, Molecules and Large Systems. Springer-Verlag.
[55]  Berezin, F.A. (1966) The Method of Second Quantization. Academic Press.
[56]  Gelfand, I.M. and Naimark, M.A. (1943) On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space. Matematicheskii Sbornik, 12, 197-213.
[57]  Davies, E.B. (1976) Quantum Theory of Open Systems. Academic Press.
[58]  Strocchi, F. and Wightman, A.S. (1974) Proof of the Charge Superselection Rule in Local Relativistic Quantum Field Theory. Journal of Mathematical Physics, 15, 2198-2224.
https://doi.org/10.1063/1.1666601
[59]  Dowling, J.P. and Milburn, G.J. (2003) Quantum Technology: The Second Quantum Revolution. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361, 1655-1674.
https://doi.org/10.1098/rsta.2003.1227
[60]  Marsden, J.E. and Ratiu, T.S. (1999) Introduction to Mechanics and Symmetry. Springer-Verlag.
[61]  Aaronson, S. and Ghazi, B. (2016) Quantum Complexity of Setting Equality.
[62]  Milnor, J. (1963) Morse Theory. Princeton University Press.
[63]  Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics. Springer-Verlag.
[64]  Bengtsson, I. and Zyczkowski, K. (2006) Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press.
https://doi.org/10.1017/cbo9780511535048
[65]  Polyakov, A.M. (1987) Gauge Fields and Strings. Harwood Academic Publishers.
[66]  Kobayashi, S. and Nomizu, K. (1969) Foundations of Differential Geometry. Inter-science Publishers.
[67]  Henneaux, M. and Teitelboim, C. (1990) Quantization of Gauge Systems. Princeton University Press.
[68]  Simon, B. (2015) Operator Theory: A Comprehensive Course in Analysis, Part 4. American Mathematical Society.
[69]  Conway, J.B. (1990) A Course in Functional Analysis. Springer-Verlag.
[70]  Putnam, C.R. (2016) Commutation Properties of Hilbert Space Operators and Related Topics. Springer-Verlag.
[71]  Riesz, F. and Sz.-Nagy, B. (1990) Functional Analysis. Dover Publications.
[72]  Halmos, P.R. (1957) Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company.
[73]  Yosida, K. (1980) Functional Analysis. Springer-Verlag.
[74]  Varadarajan, V.S. (1985) Geometry of Quantum Theory. Springer-Verlag.
[75]  Emch, G.G. (1972) Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley-Interscience.
[76]  Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198.
https://doi.org/10.1007/bf01397280
[77]  Polyakov, A.M. (1977) Quark Confinement and Topology of Gauge Theories. Nuclear Physics B, 120, 429-458.
https://doi.org/10.1016/0550-3213(77)90086-4
[78]  Coleman, S. and Mandula, J. (1967) All Possible Symmetries of the S Matrix. Physical Review, 159, 1251-1256.
https://doi.org/10.1103/physrev.159.1251
[79]  Werner, R.F. (2004) The Uncertainty Relation for Joint Measurement of Position and Momentum. Quantum Information and Computation, 4, 546-562.
https://doi.org/10.26421/qic4.6-7-13
[80]  Noether, E. (1918) Invariante Variationsprobleme. Nachrichten von der Gesell-schaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235-257.
[81]  Kosmann-Schwarzbach, Y. (2011) The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer-Verlag.
[82]  Heisenberg, W. (1930) The Physical Principles of Quantum Theory. University of Chicago Press.
[83]  Dirac, P.A.M. (1967) The Principles of Quantum Mechanics. Oxford University Press.
[84]  Weinberg, S. (1996) The Quantum Theory of Fields, Volume 2: Modern Applications. Cambridge University Press.
[85]  Atiyah, M.F. (1988) New Invariants of 3-and 4-Dimensional Manifolds. In: The Mathematical Heritage of Hermann Weyl, American Mathematical Society, 285-299.
[86]  Fredenhagen, K. (1985) On the Modular Structure of Local Algebras of Observables. Communications in Mathematical Physics, 97, 79-89.
https://doi.org/10.1007/bf01206179
[87]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press.
[88]  Preskill, J. (2012) Quantum Computing and the Entanglement Frontier.
[89]  Aharonov, D. and Ta-Shma, A. (2003) Adiabatic Quantum State Generation and Statistical Zero Knowledge. Proceedings of the 35th Annual ACM symposium on Theory of Computing, San Diego, 9-11 June 2003, 20-29.
https://doi.org/10.1145/780542.780546
[90]  Ta-Shma, A. (2004) Storing Information with a Constant Number of Qubits. Information Processing Letters, 90, 23-29.
[91]  Coppersmith, D. (1994) An Approximate Fourier Transform Useful in Quantum Factoring. IBM Research Report RC19642.
[92]  Knill, E. (2005) Quantum Computing with Realistically Noisy Devices. Nature, 434, 39-44.
https://doi.org/10.1038/nature03350
[93]  Terhal, B.M. (2004) Is Entanglement Monogamous? IBM Journal of Research and Development, 48, 71-78.
https://doi.org/10.1147/rd.481.0071
[94]  DiVincenzo, D.P. (2000) The Physical Implementation of Quantum Computation. Fortschritte der Physik, 48, 771-783.
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
[95]  Cleve, R. and Watrous, J. (2016) Fast Parallel Circuits for the Quantum Fourier Transform. SIAM Journal on Computing, 45, 1570-1595.
[96]  Kitaev, A., Shen, A. and Vyalyi, M. (2002) Classical and Quantum Computation. American Mathematical Society.
https://doi.org/10.1090/gsm/047
[97]  Gottesman, D. (2010) An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. Proceedings of Symposia in Applied Mathematics, 68, 13-58.
[98]  Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79.
https://doi.org/10.22331/q-2018-08-06-79
[99]  Breuer, H.P. and Petruccione, F. (2016) The Theory of Open Quantum Systems. Oxford University Press.
[100]  Martinis, J.M. (2019) Quantum Computing and Quantum Supremacy. Science, 364, 940-941.
[101]  Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715-775.
https://doi.org/10.1103/revmodphys.75.715
[102]  Gottesman, D. (1997) Stabilizer Codes and Quantum Error Correction. Ph.D. The-sis, California Institute of Technology.
[103]  Shor, P.W. (1996) Fault-Tolerant Quantum Computation. Proceedings of 37th Conference on Foundations of Computer Science, Burlington, 14-16 October 1996, 56-65.
https://doi.org/10.1109/sfcs.1996.548464
[104]  Henneaux, M. and Teitelboim, C. (1992) Quantization of Gauge Systems. Princeton University Press.
https://doi.org/10.1515/9780691213866
[105]  Dowling, J.P. and Milburn, G.J. (2008) Quantum Technology: The Second Quantum Revolution. Philosophical Transactions of the Royal Society A, 366, 3733-3736.
[106]  Brown, A.R. and Susskind, L. (2019) Second Law of Quantum Complexity. Physical Review D, 100, Article ID: 046020.
[107]  Witten, E. (2016) Notes on Some Entanglement Properties of Quantum Field Theory. Reviews of Modern Physics, 88, Article ID: 035001.
[108]  Gottesman, D. (2016) Quantum Fault Tolerance in Small Experiments.
[109]  Kitaev, A.Y. (2003) Fault-Tolerant Quantum Computation by Anyons. Annals of Physics, 303, 2-30.
https://doi.org/10.1016/s0003-4916(02)00018-0
[110]  Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58, 13-30.
https://doi.org/10.1080/01621459.1963.10500830
[111]  Bloch, I., Dalibard, J. and Nascimbène, S. (2012) Quantum Simulations with Ultracold Quantum Gases. Nature Physics, 8, 267-276.
https://doi.org/10.1038/nphys2259
[112]  Heisenberg, W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879-893.
https://doi.org/10.1007/bf01328377
[113]  von Neumann, J. (1932) Mathematische Grundlagen der Quantenmechanik. Springer-Verlag.
[114]  Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43.
https://doi.org/10.1002/prop.201500092
[115]  Margolus, N. and Levitin, L.B. (1998) The Maximum Speed of Dynamical Evolution. Physica D: Nonlinear Phenomena, 120, 188-195.
https://doi.org/10.1016/s0167-2789(98)00054-2
[116]  Hayden, P. and Preskill, J. (2007) Black Holes as Mirrors: Quantum Information in Random Subsystems. Journal of High Energy Physics, 2007, 120.
https://doi.org/10.1088/1126-6708/2007/09/120
[117]  Sekino, Y. and Susskind, L. (2008) Fast Scramblers. Journal of High Energy Physics, 2008, 65.
https://doi.org/10.1088/1126-6708/2008/10/065
[118]  Belavin, A.A., Polyakov, A.M., Schwartz, A.S. and Tyupkin, Y.S. (1975) Pseudoparticle Solutions of the Yang-Mills Equations. Physics Letters B, 59, 85-87.
https://doi.org/10.1016/0370-2693(75)90163-x
[119]  ‘t Hooft, G. (1976) Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle. Physical Review D, 14, 3432-3450.
https://doi.org/10.1103/physrevd.14.3432
[120]  Coleman, S. (1978) The Uses of Instantons. In: Aspects of Symmetry, Cambridge University Press, 265-350.
[121]  Witten, E. (1979) Instatons, the Quark Model, and the 1/N Expansion. Nuclear Physics B, 149, 285-320.
https://doi.org/10.1016/0550-3213(79)90243-8
[122]  Wilson, K.G. (1974) Confinement of Quarks. Physical Review D, 10, 2445-2459.
https://doi.org/10.1103/physrevd.10.2445
[123]  Mandelstam, S. (1976) II. Vortices and Quark Confinement in Non-Abelian Gauge Theories. Physics Reports, 23, 245-249.
https://doi.org/10.1016/0370-1573(76)90043-0
[124]  Gribov, V.N. (1978) Quantization of Non-Abelian Gauge Theories. Nuclear Physics B, 139, 1-19.
https://doi.org/10.1016/0550-3213(78)90175-x
[125]  Kogut, J.B. (1979) An Introduction to Lattice Gauge Theory and Spin Systems. Reviews of Modern Physics, 51, 659-713.
https://doi.org/10.1103/revmodphys.51.659
[126]  Coleman, S. (1985) Aspects of Symmetry. Cambridge University Press.
https://doi.org/10.1017/cbo9780511565045
[127]  Jackiw, R. (1977) Quantum Meaning of Classical Field Theory. Reviews of Modern Physics, 49, 681-706.
https://doi.org/10.1103/revmodphys.49.681
[128]  Maldacena, J. (1998) The Large N Limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics, 2, 231-252.
https://doi.org/10.4310/atmp.1998.v2.n2.a1
[129]  DeWitt, B.S. (1967) Quantum Theory of Gravity. I. The Canonical Theory. Physical Review, 160, 1113-1148.
https://doi.org/10.1103/physrev.160.1113
[130]  Hawking, S.W. and Page, D.N. (1983) Thermodynamics of Black Holes in Anti-De Sitter Space. Communications in Mathematical Physics, 87, 577-588.
https://doi.org/10.1007/bf01208266
[131]  Almheiri, A., Dong, X. and Harlow, D. (2015) Bulk Locality and Quantum Error Correction in Ads/CFT. Journal of High Energy Physics, 2015, 163.
https://doi.org/10.1007/jhep04(2015)163
[132]  Pastawski, F., Yoshida, B., Harlow, D. and Preskill, J. (2015) Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence. Journal of High Energy Physics, 2015, 149.
https://doi.org/10.1007/jhep06(2015)149
[133]  Czech, B., Lamprou, L., McCandlish, S. and Sully, J. (2015) Integral Geometry and Holography. Journal of High Energy Physics, 2015, 175.
https://doi.org/10.1007/jhep10(2015)175
[134]  Hubeny, V.E., Rangamani, M. and Takayanagi, T. (2007) A Covariant Holographic Entanglement Entropy Proposal. Journal of High Energy Physics, 2007, 062-062.
https://doi.org/10.1088/1126-6708/2007/07/062
[135]  Wall, A.C. (2012) Proof of the Generalized Second Law for Rapidly Changing Fields and Arbitrary Horizon Slices. Physical Review D, 85, Article ID: 104049.
https://doi.org/10.1103/physrevd.85.104049
[136]  Headrick, M. and Takayanagi, T. (2007) Holographic Proof of the Strong Subadditivity of Entanglement Entropy. Physical Review D, 76, Article ID: 106013.
https://doi.org/10.1103/physrevd.76.106013
[137]  Faulkner, T., Guica, M., Hartman, T., Myers, R.C. and Van Raamsdonk, M. (2014) Gravitation from Entanglement in Holographic CFTS. Journal of High Energy Physics, 2014, 51.
https://doi.org/10.1007/jhep03(2014)051
[138]  Dong, X. and Zhou, L. (2016) Spacetime as the Optimal Generative Network of Quantum States: A Roadmap to QM=GR?
[139]  Verlinde, E. (2011) On the Origin of Gravity and the Laws of Newton. Journal of High Energy Physics, 2011, 29.
https://doi.org/10.1007/jhep04(2011)029
[140]  Jacobson, T. (1995) Thermodynamics of Spacetime: The Einstein Equation of State. Physical Review Letters, 75, 1260-1263.
https://doi.org/10.1103/physrevlett.75.1260
[141]  Swingle, B. (2012) Entanglement Renormalization and Holography. Physical Review D, 86, Article ID: 065007.
https://doi.org/10.1103/physrevd.86.065007
[142]  Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F. and Schoelkopf, R.J. (2010) Introduction to Quantum Noise, Measurement, and Amplification. Reviews of Modern Physics, 82, 1155-1208.
https://doi.org/10.1103/revmodphys.82.1155
[143]  Caves, C.M. (1981) Quantum-mechanical Noise in an Interferometer. Physical Review D, 23, 1693-1708.
https://doi.org/10.1103/physrevd.23.1693
[144]  Devoret, M.H. and Schoelkopf, R.J. (2013) Superconducting Circuits for Quantum Information: An Outlook. Science, 339, 1169-1174.
https://doi.org/10.1126/science.1231930
[145]  Taylor, J.R. (1997) An Introduction to Error Analysis. University Science Books.
[146]  Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., et al. (2004) Strong Coupling of a Single Photon to a Superconducting Qubit Using Circuit Quantum Electrodynamics. Nature, 431, 162-167.
https://doi.org/10.1038/nature02851
[147]  Houck, A.A., Türeci, H.E. and Koch, J. (2012) On-Chip Quantum Simulation with Superconducting Circuits. Nature Physics, 8, 292-299.
https://doi.org/10.1038/nphys2251
[148]  Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W. and Bloch, I. (2002) Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature, 415, 39-44.
https://doi.org/10.1038/415039a
[149]  Bakr, W.S., Gillen, J.I., Peng, A., Fölling, S. and Greiner, M. (2009) A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard-Regime Optical Lattice. Nature, 462, 74-77.
https://doi.org/10.1038/nature08482
[150]  Schoelkopf, R.J. and Girvin, S.M. (2008) Wiring up Quantum Systems. Nature, 451, 664-669.
https://doi.org/10.1038/451664a
[151]  Arute, F., Arya, K., Babbush, R., et al. (2019) Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574, 505-510.
[152]  Blais, A., Grimsmo, A.L., Girvin, S.M. and Wallraff, A. (2021) Circuit Quantum Electrodynamics. Reviews of Modern Physics, 93, Article ID: 025005.
https://doi.org/10.1103/revmodphys.93.025005
[153]  Monroe, C., Campbell, W.C., Duan, L., Gong, Z., Gorshkov, A.V., Hess, P.W., et al. (2021) Programmable Quantum Simulations of Spin Systems with Trapped Ions. Reviews of Modern Physics, 93, Article ID: 025001.
https://doi.org/10.1103/revmodphys.93.025001
[154]  Temme, K., Bravyi, S. and Gambetta, J.M. (2017) Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119, Article ID: 180509.
https://doi.org/10.1103/physrevlett.119.180509
[155]  Kandala, A., Temme, K., Córcoles, A.D., Mezzacapo, A., Chow, J.M. and Gambetta, J.M. (2019) Error Mitigation Extends the Computational Reach of a Noisy Quantum Processor. Nature, 567, 491-495.
https://doi.org/10.1038/s41586-019-1040-7
[156]  Wilhelm, F.K. and Kirchhoff, S. (2020) Perfect Quantum Control in the Presence of Decay. Physical Review Research, 2, Article ID: 013256.
[157]  Rovelli, C. (2004) Quantum Gravity. Cambridge University Press.
https://doi.org/10.1017/cbo9780511755804
[158]  Simon, B. (1998) Operator Theory: A Comprehensive Course in Analysis, Part 4. American Mathematical Society.
[159]  Gårding, L. (1953) On the Essential Spectrum of Schrödinger Operators. Journal of Mathematical Analysis and Applications, 52, 1-12.
[160]  Banach, S. (1932) Théorie des opérations linéaires. Monografie Matematyczne.
[161]  Krein, M.G. (1947) The Theory of Self-Adjoint Extensions of Semi-Bounded Hermitian Transformations and Its Applications. Matematicheskii Sbornik, 20, 431-495.
[162]  Nelson, E. (1959) Analytic Vectors. The Annals of Mathematics, 70, 572-615.
https://doi.org/10.2307/1970331
[163]  Brukner, Č. (2019) A No-Go Theorem for Observer-Independent Facts. Entropy, 21, 379.
[164]  Palmer, M.C., Girelli, F. and Bartlett, S.D. (2021) Changing Quantum Reference Frames. Physical Review Research, 3, Article ID: 033195.
[165]  Streater, R.F. and Wightman, A.S. (1964) PCT, Spin and Statistics, and All That. W. A. Benjamin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133