This work proposes quantum circuit complexity—the minimal number of elementary operations needed to implement a quantum transformation—be established as a legitimate physical observable. We prove that circuit complexity satisfies all requirements for physical observables, including self-adjointness, gauge invariance, and a consistent measurement theory with well-defined uncertainty relations. We develop complete protocols for measuring complexity in quantum systems and demonstrate its connections to gauge theory and quantum gravity. Our results suggest that computational requirements may constitute physical laws as fundamental as energy conservation. This framework grants insights into the relationship between quantum information, gravity, and the emergence of spacetime geometry while offering practical methods for experimental verification. Our results indicate that the physical universe may be governed by both energetic and computational constraints, with profound implications for our understanding of fundamental physics.
References
[1]
von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[2]
Wigner, E.P. (1959) Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press.
[3]
Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics, Vol. I: Functional Analysis. Academic Press.
[4]
Weinberg, S. (1995) The Quantum Theory of Fields. Cambridge University Press. https://doi.org/10.1017/cbo9781139644167
[5]
Haag, R. and Kastler, D. (1964) An Algebraic Approach to Quantum Field Theory. JournalofMathematicalPhysics, 5, 848-861. https://doi.org/10.1063/1.1704187
[6]
Susskind, L. (2016) Computational Complexity and Black Hole Horizons. FortschrittederPhysik, 64, 24-43. https://doi.org/10.1002/prop.201500092
[7]
Brown, A.R., et al. (2018) Quantum Gravity in the Lab: Teleportation by Size and Traversable Wormholes. PhysicalReviewLetters, 120, Article ID: 121601.
[8]
Maldacena, J. and Susskind, L. (2016) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 64, 44-57.
[9]
Nielsen, M.A. (2006) A Geometric Approach to Quantum Circuit Lower Bounds. QuantumInformationandComputation, 6, 213-262. https://doi.org/10.26421/qic6.3-2
[10]
Nielsen, M.A., Dowling, M.R., Gu, M. and Doherty, A.C. (2006) Quantum Computation as Geometry. Science, 311, 1133-1135. https://doi.org/10.1126/science.1121541
[11]
Witten, E. (1998) Anti De Sitter Space and Holography. AdvancesinTheoreticalandMathematicalPhysics, 2, 253-291. https://doi.org/10.4310/atmp.1998.v2.n2.a2
[12]
Susskind, L. and Zhao, Y. (2014) Switchbacks and the Bridge to Nowhere.
[13]
Stanford, D. and Susskind, L. (2014) Complexity and Shock Wave Geometries. PhysicalReviewD, 90, Article ID: 126007. https://doi.org/10.1103/physrevd.90.126007
[14]
Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. GeneralRelativityandGravitation, 42, 2323-2329. https://doi.org/10.1007/s10714-010-1034-0
[15]
Ryu, S. and Takayanagi, T. (2006) Holographic Derivation of Entanglement Entropy from the Anti-de Sitter Space/Conformal Field Theory Correspondence. PhysicalReviewLetters, 96, Article ID: 181602. https://doi.org/10.1103/physrevlett.96.181602
[16]
Susskind, L. (2019) Black Holes and Complexity: Inside the Horizon. Springer.
[17]
Davies, E.B. and Lewis, J.T. (1970) An Operational Approach to Quantum Probability. CommunicationsinMathematicalPhysics, 17, 239-260. https://doi.org/10.1007/bf01647093
[18]
Wightman, A.S. (1956) Quantum Field Theory in Terms of Vacuum Expectation Values. PhysicalReview, 101, 860-866. https://doi.org/10.1103/physrev.101.860
[19]
Strocchi, F. (1967) Complex Coordinates and Quantum Mechanics. ReviewsofModernPhysics, 39, 451-461.
[20]
Reed, M. and Simon, B. (1978) Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators. Academic Press.
[21]
Kato, T. (1995) Perturbation Theory for Linear Operators. Springer-Verlag.
[22]
Bargmann, V. (1954) On Unitary Ray Representations of Continuous Groups. TheAnnalsofMathematics, 59, 1-46. https://doi.org/10.2307/1969831
[23]
Strocchi, F. (1978) Gauge Problem in Quantum Field Theory. Physical Review D, 17, 2010-2021.
[24]
Kraus, K. (1983) States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer-Verlag.
[25]
Ozawa, M. (2004) Uncertainty Relations for Joint Measurements of Noncommuting Observables. PhysicsLettersA, 320, 367-374. https://doi.org/10.1016/j.physleta.2003.12.001
[26]
Hooft, G. (1971) Renormalizable Lagrangians for Massive Yang-Mills Fields. NuclearPhysicsB, 35, 167-188. https://doi.org/10.1016/0550-3213(71)90139-8
[27]
Hooft, G. (1974) A Planar Diagram Theory for Strong Interactions. NuclearPhysicsB, 72, 461-473. https://doi.org/10.1016/0550-3213(74)90154-0
[28]
Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. PhysicalReview, 96, 191-195. https://doi.org/10.1103/physrev.96.191
Nielsen, M.A. (2007) A Geometric Approach to Quantum Circuit Lower Bounds.
[31]
Preskill, J. (1998) Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology.
[32]
Aharonov, D. and Ben-Or, M. (2008) Fault-Tolerant Quantum Computation with Constant Error Rate. SIAMJournalonComputing, 38, 1207-1282. https://doi.org/10.1137/s0097539799359385
[33]
Friedrichs, K. (1934) Spectral Theory of Operators in Hilbert Space. MathematischeAnnalen, 109, 465-487. https://doi.org/10.1007/bf01449150
[34]
Becchi, C., Rouet, A. and Stora, R. (1976) Renormalization of Gauge Theories. AnnalsofPhysics, 98, 287-321. https://doi.org/10.1016/0003-4916(76)90156-1
[35]
Holevo, A.S. (2001) Statistical Structure of Quantum Theory. Springer-Verlag.
[36]
Robertson, H.P. (1929) The Uncertainty Principle. PhysicalReview, 34, 163-164. https://doi.org/10.1103/physrev.34.163
[37]
Witten, E. (1982) Supersymmetry and Morse Theory. JournalofDifferentialGeometry, 17, 661-692. https://doi.org/10.4310/jdg/1214437492
[38]
Jaffe, A. and Witten, E. (2000) Quantum Yang-Mills Theory. In: TheMillenniumPrizeProblems, Clay Mathematics Institute, 129-152.
[39]
Reed, M. and Simon, B. (1975) Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness. Academic Press.
[40]
Dunford, N. and Schwartz, J.T. (1963) Linear Operators, Part II: Spectral Theory. Interscience Publishers.
[41]
Atiyah, M.F. (1978) Geometry of Yang-Mills Fields. Scuola Normale Superiore.
[42]
Ludwig, G. (1983) Foundations of Quantum Mechanics I. Springer-Verlag.
[43]
Haag, R. (1992) Local Quantum Physics: Fields, Particles, Algebras. Springer-Verlag.
[44]
Lloyd, S. (2000) Ultimate Physical Limits to Computation. Nature, 406, 1047-1054. https://doi.org/10.1038/35023282
[45]
Lloyd, S. (2006) Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Knopf.
[46]
Stone, M.H. (1930) Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. ProceedingsoftheNationalAcademyofSciences, 16, 172-175. https://doi.org/10.1073/pnas.16.2.172
[47]
Schrödinger, E. (1930) Zum Heisenbergschen Unschärfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 296-303.
[48]
Wheeler, J.A. (1990) Information, Physics, Quantum: The Search for Links. In: Zurek, W.H., Ed., Complexity, Entropy, andthePhysicsofInformation, The SFI Press, 3-28.
[49]
Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Uni-versal Quantum Computer. ProceedingsoftheRoyalSocietyA, 400, 97-117.
[50]
Hooft, G. (1999) Quantum Gravity as a Dissipative Deterministic System. ClassicalandQuantumGravity, 16, 3263-3279. https://doi.org/10.1088/0264-9381/16/10/316
[51]
Rovelli, C. (1996) Relational Quantum Mechanics. InternationalJournalofTheoreticalPhysics, 35, 1637-1678. https://doi.org/10.1007/bf02302261
[52]
Witten, E. (1989) Quantum Field Theory and the Jones Polynomial. CommunicationsinMathematicalPhysics, 121, 351-399. https://doi.org/10.1007/bf01217730
[53]
Araki, H. (1999) Mathematical Theory of Quantum Fields. Oxford University Press.
[54]
Thirring, W. (2002) Quantum Mathematical Physics: Atoms, Molecules and Large Systems. Springer-Verlag.
[55]
Berezin, F.A. (1966) The Method of Second Quantization. Academic Press.
[56]
Gelfand, I.M. and Naimark, M.A. (1943) On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space. MatematicheskiiSbornik, 12, 197-213.
[57]
Davies, E.B. (1976) Quantum Theory of Open Systems. Academic Press.
[58]
Strocchi, F. and Wightman, A.S. (1974) Proof of the Charge Superselection Rule in Local Relativistic Quantum Field Theory. JournalofMathematicalPhysics, 15, 2198-2224. https://doi.org/10.1063/1.1666601
[59]
Dowling, J.P. and Milburn, G.J. (2003) Quantum Technology: The Second Quantum Revolution. PhilosophicalTransactionsoftheRoyalSocietyofLondon. SeriesA: Mathematical, PhysicalandEngineeringSciences, 361, 1655-1674. https://doi.org/10.1098/rsta.2003.1227
[60]
Marsden, J.E. and Ratiu, T.S. (1999) Introduction to Mechanics and Symmetry. Springer-Verlag.
[61]
Aaronson, S. and Ghazi, B. (2016) Quantum Complexity of Setting Equality.
[62]
Milnor, J. (1963) Morse Theory. Princeton University Press.
[63]
Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics. Springer-Verlag.
[64]
Bengtsson, I. and Zyczkowski, K. (2006) Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press. https://doi.org/10.1017/cbo9780511535048
[65]
Polyakov, A.M. (1987) Gauge Fields and Strings. Harwood Academic Publishers.
[66]
Kobayashi, S. and Nomizu, K. (1969) Foundations of Differential Geometry. Inter-science Publishers.
[67]
Henneaux, M. and Teitelboim, C. (1990) Quantization of Gauge Systems. Princeton University Press.
[68]
Simon, B. (2015) Operator Theory: A Comprehensive Course in Analysis, Part 4. American Mathematical Society.
[69]
Conway, J.B. (1990) A Course in Functional Analysis. Springer-Verlag.
[70]
Putnam, C.R. (2016) Commutation Properties of Hilbert Space Operators and Related Topics. Springer-Verlag.
[71]
Riesz, F. and Sz.-Nagy, B. (1990) Functional Analysis. Dover Publications.
[72]
Halmos, P.R. (1957) Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company.
[73]
Yosida, K. (1980) Functional Analysis. Springer-Verlag.
[74]
Varadarajan, V.S. (1985) Geometry of Quantum Theory. Springer-Verlag.
[75]
Emch, G.G. (1972) Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley-Interscience.
[76]
Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. ZeitschriftfürPhysik, 43, 172-198. https://doi.org/10.1007/bf01397280
[77]
Polyakov, A.M. (1977) Quark Confinement and Topology of Gauge Theories. NuclearPhysicsB, 120, 429-458. https://doi.org/10.1016/0550-3213(77)90086-4
[78]
Coleman, S. and Mandula, J. (1967) All Possible Symmetries of the S Matrix. PhysicalReview, 159, 1251-1256. https://doi.org/10.1103/physrev.159.1251
[79]
Werner, R.F. (2004) The Uncertainty Relation for Joint Measurement of Position and Momentum. QuantumInformationandComputation, 4, 546-562. https://doi.org/10.26421/qic4.6-7-13
[80]
Noether, E. (1918) Invariante Variationsprobleme. Nachrichten von der Gesell-schaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235-257.
[81]
Kosmann-Schwarzbach, Y. (2011) The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer-Verlag.
[82]
Heisenberg, W. (1930) The Physical Principles of Quantum Theory. University of Chicago Press.
[83]
Dirac, P.A.M. (1967) The Principles of Quantum Mechanics. Oxford University Press.
[84]
Weinberg, S. (1996) The Quantum Theory of Fields, Volume 2: Modern Applications. Cambridge University Press.
[85]
Atiyah, M.F. (1988) New Invariants of 3-and 4-Dimensional Manifolds. In: TheMathematicalHeritageofHermannWeyl, American Mathematical Society, 285-299.
[86]
Fredenhagen, K. (1985) On the Modular Structure of Local Algebras of Observables. CommunicationsinMathematicalPhysics, 97, 79-89. https://doi.org/10.1007/bf01206179
[87]
Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press.
[88]
Preskill, J. (2012) Quantum Computing and the Entanglement Frontier.
[89]
Aharonov, D. and Ta-Shma, A. (2003) Adiabatic Quantum State Generation and Statistical Zero Knowledge. Proceedingsofthe35th Annual ACMsymposiumonTheoryof Computing, San Diego, 9-11 June 2003, 20-29. https://doi.org/10.1145/780542.780546
[90]
Ta-Shma, A. (2004) Storing Information with a Constant Number of Qubits. InformationProcessingLetters, 90, 23-29.
[91]
Coppersmith, D. (1994) An Approximate Fourier Transform Useful in Quantum Factoring. IBM Research Report RC19642.
[92]
Knill, E. (2005) Quantum Computing with Realistically Noisy Devices. Nature, 434, 39-44. https://doi.org/10.1038/nature03350
[93]
Terhal, B.M. (2004) Is Entanglement Monogamous? IBMJournalofResearchandDevelopment, 48, 71-78. https://doi.org/10.1147/rd.481.0071
[94]
DiVincenzo, D.P. (2000) The Physical Implementation of Quantum Computation. FortschrittederPhysik, 48, 771-783. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
[95]
Cleve, R. and Watrous, J. (2016) Fast Parallel Circuits for the Quantum Fourier Transform. SIAMJournalonComputing, 45, 1570-1595.
[96]
Kitaev, A., Shen, A. and Vyalyi, M. (2002) Classical and Quantum Computation. American Mathematical Society. https://doi.org/10.1090/gsm/047
[97]
Gottesman, D. (2010) An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. ProceedingsofSymposiainAppliedMathematics, 68, 13-58.
[98]
Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
[99]
Breuer, H.P. and Petruccione, F. (2016) The Theory of Open Quantum Systems. Oxford University Press.
Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. ReviewsofModernPhysics, 75, 715-775. https://doi.org/10.1103/revmodphys.75.715
[102]
Gottesman, D. (1997) Stabilizer Codes and Quantum Error Correction. Ph.D. The-sis, California Institute of Technology.
Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. JournaloftheAmericanStatisticalAssociation, 58, 13-30. https://doi.org/10.1080/01621459.1963.10500830
[111]
Bloch, I., Dalibard, J. and Nascimbène, S. (2012) Quantum Simulations with Ultracold Quantum Gases. NaturePhysics, 8, 267-276. https://doi.org/10.1038/nphys2259
[112]
Heisenberg, W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. ZeitschriftfürPhysik, 33, 879-893. https://doi.org/10.1007/bf01328377
[113]
von Neumann, J. (1932) Mathematische Grundlagen der Quantenmechanik. Springer-Verlag.
[114]
Susskind, L. (2016) Computational Complexity and Black Hole Horizons. FortschrittederPhysik, 64, 24-43. https://doi.org/10.1002/prop.201500092
[115]
Margolus, N. and Levitin, L.B. (1998) The Maximum Speed of Dynamical Evolution. PhysicaD: NonlinearPhenomena, 120, 188-195. https://doi.org/10.1016/s0167-2789(98)00054-2
[116]
Hayden, P. and Preskill, J. (2007) Black Holes as Mirrors: Quantum Information in Random Subsystems. JournalofHighEnergyPhysics, 2007, 120. https://doi.org/10.1088/1126-6708/2007/09/120
[117]
Sekino, Y. and Susskind, L. (2008) Fast Scramblers. JournalofHighEnergyPhysics, 2008, 65. https://doi.org/10.1088/1126-6708/2008/10/065
[118]
Belavin, A.A., Polyakov, A.M., Schwartz, A.S. and Tyupkin, Y.S. (1975) Pseudoparticle Solutions of the Yang-Mills Equations. PhysicsLettersB, 59, 85-87. https://doi.org/10.1016/0370-2693(75)90163-x
[119]
‘t Hooft, G. (1976) Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle. PhysicalReviewD, 14, 3432-3450. https://doi.org/10.1103/physrevd.14.3432
[120]
Coleman, S. (1978) The Uses of Instantons. In: AspectsofSymmetry, Cambridge University Press, 265-350.
[121]
Witten, E. (1979) Instatons, the Quark Model, and the 1/N Expansion. NuclearPhysicsB, 149, 285-320. https://doi.org/10.1016/0550-3213(79)90243-8
[122]
Wilson, K.G. (1974) Confinement of Quarks. PhysicalReviewD, 10, 2445-2459. https://doi.org/10.1103/physrevd.10.2445
[123]
Mandelstam, S. (1976) II. Vortices and Quark Confinement in Non-Abelian Gauge Theories. PhysicsReports, 23, 245-249. https://doi.org/10.1016/0370-1573(76)90043-0
Kogut, J.B. (1979) An Introduction to Lattice Gauge Theory and Spin Systems. ReviewsofModernPhysics, 51, 659-713. https://doi.org/10.1103/revmodphys.51.659
[126]
Coleman, S. (1985) Aspects of Symmetry. Cambridge University Press. https://doi.org/10.1017/cbo9780511565045
[127]
Jackiw, R. (1977) Quantum Meaning of Classical Field Theory. ReviewsofModernPhysics, 49, 681-706. https://doi.org/10.1103/revmodphys.49.681
[128]
Maldacena, J. (1998) The Large N Limit of Superconformal Field Theories and Supergravity. AdvancesinTheoreticalandMathematicalPhysics, 2, 231-252. https://doi.org/10.4310/atmp.1998.v2.n2.a1
[129]
DeWitt, B.S. (1967) Quantum Theory of Gravity. I. The Canonical Theory. PhysicalReview, 160, 1113-1148. https://doi.org/10.1103/physrev.160.1113
[130]
Hawking, S.W. and Page, D.N. (1983) Thermodynamics of Black Holes in Anti-De Sitter Space. CommunicationsinMathematicalPhysics, 87, 577-588. https://doi.org/10.1007/bf01208266
[131]
Almheiri, A., Dong, X. and Harlow, D. (2015) Bulk Locality and Quantum Error Correction in Ads/CFT. JournalofHighEnergyPhysics, 2015, 163. https://doi.org/10.1007/jhep04(2015)163
[132]
Pastawski, F., Yoshida, B., Harlow, D. and Preskill, J. (2015) Holographic Quantum Error-Correcting Codes: Toy Models for the Bulk/Boundary Correspondence. JournalofHighEnergyPhysics, 2015, 149. https://doi.org/10.1007/jhep06(2015)149
[133]
Czech, B., Lamprou, L., McCandlish, S. and Sully, J. (2015) Integral Geometry and Holography. JournalofHighEnergyPhysics, 2015, 175. https://doi.org/10.1007/jhep10(2015)175
[134]
Hubeny, V.E., Rangamani, M. and Takayanagi, T. (2007) A Covariant Holographic Entanglement Entropy Proposal. JournalofHighEnergyPhysics, 2007, 062-062. https://doi.org/10.1088/1126-6708/2007/07/062
[135]
Wall, A.C. (2012) Proof of the Generalized Second Law for Rapidly Changing Fields and Arbitrary Horizon Slices. PhysicalReviewD, 85, Article ID: 104049. https://doi.org/10.1103/physrevd.85.104049
[136]
Headrick, M. and Takayanagi, T. (2007) Holographic Proof of the Strong Subadditivity of Entanglement Entropy. PhysicalReviewD, 76, Article ID: 106013. https://doi.org/10.1103/physrevd.76.106013
[137]
Faulkner, T., Guica, M., Hartman, T., Myers, R.C. and Van Raamsdonk, M. (2014) Gravitation from Entanglement in Holographic CFTS. JournalofHighEnergyPhysics, 2014, 51. https://doi.org/10.1007/jhep03(2014)051
[138]
Dong, X. and Zhou, L. (2016) Spacetime as the Optimal Generative Network of Quantum States: A Roadmap to QM=GR?
[139]
Verlinde, E. (2011) On the Origin of Gravity and the Laws of Newton. JournalofHighEnergyPhysics, 2011, 29. https://doi.org/10.1007/jhep04(2011)029
[140]
Jacobson, T. (1995) Thermodynamics of Spacetime: The Einstein Equation of State. PhysicalReviewLetters, 75, 1260-1263. https://doi.org/10.1103/physrevlett.75.1260
[141]
Swingle, B. (2012) Entanglement Renormalization and Holography. PhysicalReviewD, 86, Article ID: 065007. https://doi.org/10.1103/physrevd.86.065007
[142]
Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F. and Schoelkopf, R.J. (2010) Introduction to Quantum Noise, Measurement, and Amplification. ReviewsofModernPhysics, 82, 1155-1208. https://doi.org/10.1103/revmodphys.82.1155
[143]
Caves, C.M. (1981) Quantum-mechanical Noise in an Interferometer. PhysicalReviewD, 23, 1693-1708. https://doi.org/10.1103/physrevd.23.1693
[144]
Devoret, M.H. and Schoelkopf, R.J. (2013) Superconducting Circuits for Quantum Information: An Outlook. Science, 339, 1169-1174. https://doi.org/10.1126/science.1231930
[145]
Taylor, J.R. (1997) An Introduction to Error Analysis. University Science Books.
[146]
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., et al. (2004) Strong Coupling of a Single Photon to a Superconducting Qubit Using Circuit Quantum Electrodynamics. Nature, 431, 162-167. https://doi.org/10.1038/nature02851
[147]
Houck, A.A., Türeci, H.E. and Koch, J. (2012) On-Chip Quantum Simulation with Superconducting Circuits. NaturePhysics, 8, 292-299. https://doi.org/10.1038/nphys2251
[148]
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W. and Bloch, I. (2002) Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. Nature, 415, 39-44. https://doi.org/10.1038/415039a
[149]
Bakr, W.S., Gillen, J.I., Peng, A., Fölling, S. and Greiner, M. (2009) A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard-Regime Optical Lattice. Nature, 462, 74-77. https://doi.org/10.1038/nature08482
[150]
Schoelkopf, R.J. and Girvin, S.M. (2008) Wiring up Quantum Systems. Nature, 451, 664-669. https://doi.org/10.1038/451664a
[151]
Arute, F., Arya, K., Babbush, R., et al. (2019) Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574, 505-510.
[152]
Blais, A., Grimsmo, A.L., Girvin, S.M. and Wallraff, A. (2021) Circuit Quantum Electrodynamics. ReviewsofModernPhysics, 93, Article ID: 025005. https://doi.org/10.1103/revmodphys.93.025005
[153]
Monroe, C., Campbell, W.C., Duan, L., Gong, Z., Gorshkov, A.V., Hess, P.W., et al. (2021) Programmable Quantum Simulations of Spin Systems with Trapped Ions. ReviewsofModernPhysics, 93, Article ID: 025001. https://doi.org/10.1103/revmodphys.93.025001
[154]
Temme, K., Bravyi, S. and Gambetta, J.M. (2017) Error Mitigation for Short-Depth Quantum Circuits. PhysicalReviewLetters, 119, Article ID: 180509. https://doi.org/10.1103/physrevlett.119.180509
[155]
Kandala, A., Temme, K., Córcoles, A.D., Mezzacapo, A., Chow, J.M. and Gambetta, J.M. (2019) Error Mitigation Extends the Computational Reach of a Noisy Quantum Processor. Nature, 567, 491-495. https://doi.org/10.1038/s41586-019-1040-7
[156]
Wilhelm, F.K. and Kirchhoff, S. (2020) Perfect Quantum Control in the Presence of Decay. PhysicalReviewResearch, 2, Article ID: 013256.
[157]
Rovelli, C. (2004) Quantum Gravity. Cambridge University Press. https://doi.org/10.1017/cbo9780511755804
[158]
Simon, B. (1998) Operator Theory: A Comprehensive Course in Analysis, Part 4. American Mathematical Society.
[159]
Gårding, L. (1953) On the Essential Spectrum of Schrödinger Operators. Journal of Mathematical Analysis and Applications, 52, 1-12.
[160]
Banach, S. (1932) Théorie des opérations linéaires. Monografie Matematyczne.
[161]
Krein, M.G. (1947) The Theory of Self-Adjoint Extensions of Semi-Bounded Hermitian Transformations and Its Applications. MatematicheskiiSbornik, 20, 431-495.
[162]
Nelson, E. (1959) Analytic Vectors. TheAnnalsofMathematics, 70, 572-615. https://doi.org/10.2307/1970331
[163]
Brukner, Č. (2019) A No-Go Theorem for Observer-Independent Facts. Entropy, 21, 379.
[164]
Palmer, M.C., Girelli, F. and Bartlett, S.D. (2021) Changing Quantum Reference Frames. PhysicalReviewResearch, 3, Article ID: 033195.
[165]
Streater, R.F. and Wightman, A.S. (1964) PCT, Spin and Statistics, and All That. W. A. Benjamin.