全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Compositional Suitability Assessment and New Classification of Lateritic Soils for Road Construction: Case of Materials from the Thies Region in Senegal

DOI: 10.4236/gep.2025.131005, PP. 71-88

Keywords: Lateritic Gravel, Mineralogy, Geochemistry, Soil Profile, Thies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lateritic soils are found over large areas in tropical countries where their suitability for road engineering is a real concern, both compositionally and mechanically. Mineralogical and geochemical characterization, and profile description were carried out on Pliocene gravel lateritic soils from the Thies region to assess their suitability for road construction. These soils were sampled in Lam-Lam, Mont Rolland, Pout, Ngoundiane and Sindia borrow pits in that region. Minerals that make up these studied materials are quartz, kaolinite, hematite and goethite, identified by X-Ray Diffraction and confirmed with Infrared spectroscopy. This mineralogy is characteristic of lateritic soils which are concretionary structure and are formed in well-drained tropical regions like that of Thies. According to the chemical results, these gravel lateritic soils are poor in organic matter, OM < 3wt%. They also belong to the true laterites class, SiO2/(Al2O3 + Fe2O3) < 1.33. As part of this project, Gbaguidi and Diop have defined an oxide ratio and proposed the new Diop ternary diagram for classifying lateritic soils. Therefore, Thies materials are ferruginous lateritic soils, Al2O3/Fe2O3 < 1, containing non-swelling clay (kaolinite) and rich in gravelly nodules, S/CEC < 50wt%. As a result, these soils are compositionally suitable for road construction. These appreciated mineralogical, geochemical and pedological properties can now help overcome compositional challenges well before determining the bearing capacity of lateritic materials. This mechanical strength, which largely depends on their composition, is decisive in defining the optimal conditions for using lateritic materials in road geotechnics.

References

[1]  AFES (2008). Référentiel pédologique. Savoir faire.
[2]  AFNOR (2005) NF EN ISO 14688-2: Principes pour une classification: Dénomination, description et classification.
[3]  AGEROUTE (2015). Catalogue de structures de chaussées neuves et Guide de dimensionnement des chaussées au Sénégal. MITTD.
[4]  ANSD (2021). Situation Economique et Sociale de La Region de Zinguinchor.
https://www.ansd.sn/sites/default/files/2022-12/SES-Thies-2019.pdf
[5]  Autret, P. (1980). Contribution à l’étude des graveleux latéritiques traités au ciment. ENPC.
[6]  Autret, P. (1983). Latérites et graveleux latéritiques. Labora toire Central des Ponts et Chaussées.
[7]  Bagarre, E. (1990). Utilisation des graveleux latéritiques en technique routière. IFSTTAR.
[8]  Baize, D., Jabiol, B., & Gobat, J. M. (1990). Référentiel pédologique français. INRA.
[9]  Bárdossy, G. (1982). Karst Bauxites, Bauxite Deposits on Carbonate Rocks. In Developments in Economic Geology (Vol. 14, 441 p.).
[10]  Bourman, R. P., & Ollier, C. D. (2002). A Critique of the Schellmann Definition and Classification of ‘Laterite’. CATENA, 47, 117-131.
https://doi.org/10.1016/s0341-8162(01)00178-3
[11]  CEBTP (1984). Guide pratique de dimensionnement des chaussées pour les pays tropicaux. Ministère de la Coopération.
[12]  Cissé, I. K., & Ndoye, M. A. (2007). Caractérisation physico-chimique des couches de base en latérite-ciment. In Physico-chemical characterization of laterite-ciment base layers (pp. 59-70). CRA MSG.
[13]  Dione, A. (2015). Estimation du Module réversible de Graves Non traitées et modélisation par éléments finis de chaussées souples en vue d’un dimensionnement mécanistique-empirique. These de doctorat, Université de Thiès.
[14]  Diop, B. O. (2016). Étude bibliographique sur les graveleux latéritiques de la région de Thiès. In Promotion des matériaux de construction. DPPM/MIM.
[15]  Diop, B. O. (2017). Utilisation optimale des graveleux latéritiques dans les structures de chaussées routières: Cas de l’emprunt de sindia dans la région de Thiès. In Volume des abstracts (Ed.), 3ème Édition des journées doctorales-Volume des abstracts (pp. 65-66). ED-PCSTUI/FST/UCAD.
[16]  Diop, B. O. (2022). Utilisation optimale des graveleux latéritiques dans les structures de chaussées routières: Cas de gisements de la région administrative de Thiès au Sénégal. UCAD.
[17]  Diop, B. O., Talla, K., Sylla, N. F., Ndiaye, N. M., & Ngom, B. D. (2023). Physical Analyzes Applied to Lateritic Soils of Western Senegal for Their Geochemical, Mineralogical and Morphological Identification. MRS Advances, 8, 607-612.
https://doi.org/10.1557/s43580-023-00591-5
[18]  Estéoule-Choux, J. (1983). Altérations et silicifications tertiaires dans le Massif armoricain. Géologie de la France, 4, 345-351.
[19]  Florentin, J., & Lhériteau, J. (1952). Synthèse bibliographique sur les latérites.
[20]  Foko Tamba, C., Kengni, L., Tematio, P., Manefouet, B. I., & Kenfack, J. V. (2022). Assessment of Lateritic Gravelled Materials for Use in Road Pavements in Cameroon. Geotechnical and Geological Engineering, 40, 4195-4215.
https://doi.org/10.1007/s10706-022-02151-4
[21]  Gidigasu, M. D. (1976). Laterite Soil Engineering-Pedogenesis and Engineering Principles. Developments in Geotechnical Engineering.
[22]  Hyoumbi, W. T., Pizette, P., Wouatong, A. S. L., & Abriak, N. (2018). Mineralogical, Chemical, Geotechnical and Mechanical Investigations of Bafang Lateritic Fine Soils Formed on Basalts (West-Cameroon) for Road Embankment Purpose. Earth Science Research, 7, 42-57.
https://doi.org/10.5539/esr.v7n2p42
[23]  IDRRIM (2023). Guide des terrassements des remblais et des couches de forme. Cerema.
[24]  Joachim, A. W. R., & Kandiah, S. (1941). The Composition of Some Local Laterites (Cabooks), Soil Concretion and Clays. Tropical Agriculturist, 96, 67-75.
[25]  Kamtchueng, B. T., Onana, V. L., Fantong, W. Y., Ueda, A., Ntouala, R. F., Wongolo, M. H. et al. (2015). Geotechnical, Chemical and Mineralogical Evaluation of Lateritic Soils in Humid Tropical Area (Mfou, Central-Cameroon): Implications for Road Construction. International Journal of Geo-Engineering, 6, Article No. 1.
https://doi.org/10.1186/s40703-014-0001-0
[26]  Kessoum Adamou, J., Ntouala, R. F. D., Ndome Effoudou, E., Nanga Bineli, M. T., Ngo'o Ze, A., Hamadjida, G. et al. (2023). Mineralogical, Geochemical, and Geotechnical Features of Lateritic Soils from Termite Mounds in Two Contrasting Savannah Areas (Central Cameroon) as Raw Materials for Brick Making. Heliyon, 9, e17257.
https://doi.org/10.1016/j.heliyon.2023.e17257
[27]  LCPC-SETRA (2000). Réalisation des remblais et des couches de forme (2nd ed.). SETRA/LCPC.
[28]  Martin, F. J., & Doyne, H. C. (1927). Laterite and Lateritic Soils in Sierra Leone. The Journal of Agricultural Science, 17, 530-547.
https://doi.org/10.1017/s0021859600018815
[29]  Martin, F. J., & Doyne, H. C. (1930). Laterite and Lateritic Soil in Sierra Leone, II. The Journal of Agricultural Science, 20, 135-143.
https://doi.org/10.1017/s0021859600088675
[30]  Meza-Ochoa, V., L. Morales, Á., & Márquez-Godoy, M. A. (2023). Mineralogical Analysis of a Residual Soil from Medellín Dunite (Colombia) and Its Influence on Physical Properties and Unsaturated Undrained Shear Strength. Boletín de Geología, 45, 87-101.
https://doi.org/10.18273/revbol.v45n1-2023004
[31]  Millogo, Y. (2008). Étude géotechnique, chimique et minéralogique de matières premières argileuses et latéritiques du Burkina Faso améliorées aux liants hydrauliques: Application au génie civil (bâtiment et route). Thèse de Doctorat, Université de Ouagadougou.
[32]  Munsell© Color (1994). Munsell Soil Color Charts.
[33]  Nahon, D., & Demoulin, D. (1971). Contribution à l’étude des formations cuirassées du Sénégal occidental (Pétrographie, Morphologie et Stratigrahie relative). Revue de Géographie Physique et de Géologie Dynamique, 13, 35-53.
[34]  Ramanoarison, N. (1985). Étude de la stabilisation à la chaux des sols latéritiques. Thèse de Doctorat, Paris VI.
[35]  Roger, J., Banton, O., Barusseau, J. P., Castaigne, P., Comte, J., Duvail, C., et al. (2009). Notice explicative de la cartographie multicouches à 1/50 000 et 1/20 000 de la zone d’activité du Cap-Vert.
[36]  Samb, F. (2014). Modélisation par éléments finis des chaussées en graveleux latéritiques traités ou non et application au dimensionnement Mécanistique-Empirique. Thèse de Doctorat, Université de Thiès.
[37]  Schellmann, W. (1981). Considerations on the Definition and Classification of Laterites. In IGCP 129 and IAGC, International Seminar on Laterisation Process (1-10). Oxford and IBH Publishing Company.
[38]  Schellmann, W. (1983). A New Definition of Laterite. Natural Resources Development, 18, 7-21.
[39]  Shacklette, H. T., & Boerngen, J. G. (1984). Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States (U. S. G. Survey (ed.), 105 p.).
[40]  Sinisi, R. (2018). Mineralogical and Geochemical Features of Cretaceous Bauxite from San Giovanni Rotondo (Apulia, Southern Italy): A Provenance Tool. Minerals, 8, 1-19.
https://doi.org/10.3390/min8120567
[41]  Strunz, H., & Nickel, E. H. (2001). Strunz Mineralogical Tables. Chemical-Structural Mineral Classification System (9th ed.). Laupp & Göbel.
[42]  Tardy, Y. (1993). Petrology of Laterites and Tropical Soils. Masson.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133