全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pareto Distribution: A Probability Model in Social Research

DOI: 10.4236/jss.2025.131007, PP. 86-121

Keywords: Continuous Probability Distribution, Parameter Estimation, Descriptive Measures, Pareto Tail Index, Gini Concentration Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

This methodological article aims to present the type I Pareto distribution in a clear and illustrative manner for better understanding among social researchers. It also provides R scripts for practical application. This continuous distribution, with its inverted J shape, skewness towards the right side, and heavy right tail, serves as an effective probability model for various social variables, such as wealth and income, as well as behaviors that are highly frequent in a few individuals and infrequent in the majority. The type I distribution, which has a scale parameter xm and a shape parameter α, is introduced, beginning with a brief historical overview. The density, cumulative distribution, tail, moment, and characteristic functions are presented. The article proceeds with descriptive measures, estimators based on the method of moments and maximum likelihood, its relationship with other distributions, and goodness-of-fit tests. This material is applied through two examples: one involving probability and descriptive measure calculations, and the other focused on parameter estimation and fit testing using the Kolmogorov-Smirnov and Anderson-Darling tests. Additionally, scripts were developed to perform the corresponding calculations in R, a freely available software. Simulated data were used in two examples illustrating the application of the distribution. Finally, suggestions for its use are provided.

References

[1]  Ahmad, H. A. H., & Almetwally, E. M. (2020). Marshall-Olkin Generalized Pareto Distribution: Bayesian and Non Bayesian Estimation. Pakistan Journal of Statistics and Operation Research, 16, 21-33.
https://doi.org/10.18187/pjsor.v16i1.2935
[2]  Akinsete, A., Famoye, F., & Lee, C. (2008). The Beta-Pareto Distribution. Statistics, 42, 547-563.
https://doi.org/10.1080/02331880801983876
[3]  Anderson, T. W., & Darling, D. A. (1952). Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics, 23, 193-212.
https://doi.org/10.1214/aoms/1177729437
[4]  Andria, J. (2022). A Computational Proposal for a Robust Estimation of the Pareto Tail Index: An Application to Emerging Markets. Applied Soft Computing, 114, Article ID: 108048.
https://doi.org/10.1016/j.asoc.2021.108048
[5]  Arnold, B. C. (2015). Pareto Distribution (2nd ed.). John Wiley y Sons, Ltd.
https://doi.org/10.1201/b18141
[6]  Barczy, M., K. Nedényi, F., & Sütő, L. (2023). Probability Equivalent Level of Value at Risk and Higher-Order Expected Shortfalls. Insurance: Mathematics and Economics, 108, 107-128.
https://doi.org/10.1016/j.insmatheco.2022.11.004
[7]  Barnoy, A., & Reich, Z. (2022). Trusting Others: A Pareto Distribution of Source and Message Credibility among News Reporters. Communication Research, 49, 196-220.
[8]  Beare, B. K., & Toda, A. A. (2020). On the Emergence of a Power Law in the Distribution of COVID-19 Cases. Physica D: Nonlinear Phenomena, 412, Article ID: 132649.
https://doi.org/10.1016/j.physd.2020.132649
[9]  Benczes, I. (2022). Taking Back Control over the Economy: From Economic Populism to the Economic Consequences of Populism. European Policy Analysis, 8, 109-123.
https://doi.org/10.1002/epa2.1134
[10]  Bhoj, D. S., & Chandra, G. (2021). Ranked Set Sampling with Lowest Order Statistics for Pareto Distribution. Communications in Statistics-Simulation and Computation, 52, 2327-2335.
https://doi.org/10.1080/03610918.2021.1904143
[11]  Campbell, M. R., & Brauer, M. (2021). Is Discrimination Widespread? Testing Assumptions about Bias on a University Campus. Journal of Experimental Psychology: General, 150, 756-777.
https://doi.org/10.1037/xge0000983
[12]  Charpentier, A., & Flachaire, E. (2022). Pareto Models for Top Incomes and Wealth. The Journal of Economic Inequality, 20, 1-25.
https://doi.org/10.1007/s10888-021-09514-6
[13]  Chattamvelli, R., & Shanmugam, R. (2021). Pareto Distribution. In Continuous Distributions in Engineering and the Applied Sciences-Part II (pp. 179-188). Springer International Publishing.
https://doi.org/10.1007/978-3-031-02435-1_3
[14]  Chen, B., Zhang, K., Wang, L., Jiang, S., & Liu, G. (2019). Generalized Extreme Value-Pareto Distribution Function and Its Applications in Ocean Engineering. China Ocean Engineering, 33, 127-136.
https://doi.org/10.1007/s13344-019-0013-9
[15]  Cheng, W., Fu, H., Wang, L., Dong, C., Jin, Y., Jiang, M. et al. (2023). Data-Driven, Multi-moment Fluid Modeling of Landau Damping. Computer Physics Communications, 282, Article ID: 108538.
https://doi.org/10.1016/j.cpc.2022.108538
[16]  Chu, J., Dickin, O., & Nadarajah, S. (2019). A Review of Goodness of Fit Tests for Pareto Distributions. Journal of Computational and Applied Mathematics, 361, 13-41.
https://doi.org/10.1016/j.cam.2019.04.018
[17]  Diawara, D., Kane, L., Dembele, S., & Lo, G. S. (2021). Applying of the Extreme Value Theory for Determining Extreme Claims in the Automobile Insurance Sector: Case of a China Car Insurance. Afrika Statistika, 16, 2883-2909.
https://doi.org/10.16929/as/2021.2883.188
[18]  Fedotenkov, I. (2020). A Review of More than One Hundred Pareto-Tail Index Estimators. Statistica, 80, 245-299.
https://doi.org/10.6092/issn.1973-2201/9533
[19]  Feng, M., Deng, L., Chen, F., Perc, M., & Kurths, J. (2020). The Accumulative Law and Its Probability Model: An Extension of the Pareto Distribution and the Log-Normal Distribution. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476, Article ID: 20200019.
https://doi.org/10.1098/rspa.2020.0019
[20]  Gini, C. (1936). On the Measure of Concentration with Special Reference to Income and Statistics. Colorado College Publication, General Series, 208, 73-79.
[21]  Landoni, J. S., & Villegas, L. (2022). Pagan los Pobres: Consecuencias Negativas de Políticas Públicas con Buenas (y Malas) Intenciones [The Poor Pay: Negative Consequences of Public Policies with Good (and Bad) Intentions]. Editorial Galerna.
[22]  Le Gall, P., Favre, A., Naveau, P., & Prieur, C. (2022). Improved Regional Frequency Analysis of Rainfall Data. Weather and Climate Extremes, 36, Article ID: 100456.
https://doi.org/10.1016/j.wace.2022.100456
[23]  Lomax, K. S. (1954). Business Failures: Another Example of the Analysis of Failure Data. Journal of the American Statistical Association, 49, 847-852.
https://doi.org/10.1080/01621459.1954.10501239
[24]  Lorenz, M. O. (1905). Methods of Measuring the Concentration of Wealth. Publications of the American Statistical Association, 9, 209-219.
https://doi.org/10.2307/2276207
[25]  Martín, J., Parra, M. I., Pizarro, M. M., & Sanjuán, E. L. (2022). Baseline Methods for the Parameter Estimation of the Generalized Pareto Distribution. Entropy, 24, Article No. 178.
https://doi.org/10.3390/e24020178
[26]  Martins, A. L. A., Liska, G. R., Beijo, L. A., Menezes, F. S. d., & Cirillo, M. Â. (2020). Generalized Pareto Distribution Applied to the Analysis of Maximum Rainfall Events in Uruguaiana, RS, Brazil. SN Applied Sciences, 2, Article No. 1479.
https://doi.org/10.1007/s42452-020-03199-8
[27]  Mateus, A., & Caeiro, F. (2022). Confidence Intervals for the Shape Parameter of a Pareto Distribution. AIP Conference Proceedings, 2425, Article ID: 320003.
https://doi.org/10.1063/5.0081541
[28]  McCarthy, D. M., & Winer, R. S. (2019). The Pareto Rule in Marketing Revisited: Is It 80/20 or 70/20? Marketing Letters, 30, 139-150.
https://doi.org/10.1007/s11002-019-09490-y
[29]  Mojiri, A., & َََAhmadi, K. (2022). Inequality in the Distribution of Resources in Health Care System by Using the Gini Coefficient and Lorenz Curve (A Case Study of Sistan and Baluchestan Province over a Five-Year Period). Health Monitor Journal of the Iranian Institute for Health Sciences Research, 21, 227-236.
https://doi.org/10.52547/payesh.21.3.227
[30]  Navarro, D (2024). Learning Statistics with RA Tutorial for Psychology Students and Other Beginners. LibreTexts Libraries. Statistics.
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
[31]  Pareto, V. F. D. (1896). Cours d’Economie Politique (Vol. 1). F. Rouge éditeur.
[32]  Pareto, V. F. D. (1897). Cours d’Economie Politique (Vol. 2). F. Rouge éditeur.
[33]  Pearson, K. (1895). Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material. Philosophical Transactions of the Royal Society of London A, 186, 343-414.
https://doi.org/10.1098/rsta.1895.0010
[34]  Pearson, K. (1905). “Das fehlergesetz und seine verallgemeiner-ungen durch fechner und pearson.” A rejoinder. Biometrika, 4, 169-212.
https://doi.org/10.1093/biomet/4.1-2.169
[35]  Qian, W., Chen, W., & He, X. (2021). Parameter Estimation for the Pareto Distribution Based on Ranked Set Sampling. Statistical Papers, 62, 395-417.
https://doi.org/10.1007/s00362-019-01102-1
[36]  Rácz, E., Spasibko, K., Manceau, M., Ruppert, L., Chekhova, M. V., & Filip, R. (2023). Quantifying Optical Rogue Waves.
https://doi.org/10.48550/arXiv.2303.04615
[37]  Rajeev, C. D. S. (2022). Pareto Principle and Compulsive Buying Disorder—An Analysis. Journal of Educational and Social Research, 8, 44-59.
[38]  Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley.
https://doi.org/10.1002/9780470316436
[39]  Rodríguez Abreu, M. (2021). Gasto de bolsillo y gastos catastróficos en salud en hogares mexicanos. Carta Económica Regional, 34, 59-83.
https://doi.org/10.32870/cer.v0i128.7825
[40]  Ross, S. M. (2022). Simulation (6th ed.). Academic Press.
[41]  Rytgaard, M. (1990). Estimation in the Pareto Distribution. ASTIN Bulletin, 20, 201-216.
https://doi.org/10.2143/ast.20.2.2005443
[42]  Safari, M. A. M., Masseran, N., Ibrahim, K., & Hussain, S. I. (2019). A Robust and Efficient Estimator for the Tail Index of Inverse Pareto Distribution. Physica A: Statistical Mechanics and its Applications, 517, 431-439.
https://doi.org/10.1016/j.physa.2018.11.029
[43]  Sarabia, J. M., Jordá, V., & Prieto, F. (2019). On a New Pareto-Type Distribution with Applications in the Study of Income Inequality and Risk Analysis. Physica A: Statistical Mechanics and Its Applications, 527, Article ID: 121277.
https://doi.org/10.1016/j.physa.2019.121277
[44]  Sinclair, C. D., Spurr, B. D., & Ahmad, M. I. (1990). Modified Anderson Darling Test. Communications in StatisticsTheory and Methods, 19, 3677-3686.
https://doi.org/10.1080/03610929008830405
[45]  Sitthiyot, T., & Holasut, K. (2021). A Simple Method for Estimating the Lorenz Curve. Humanities and Social Sciences Communications, 8, Article No. 268.
https://doi.org/10.1057/s41599-021-00948-x
[46]  Siudem, G., Nowak, P., & Gagolewski, M. (2022). Power Laws, the Price Model, and the Pareto Type-2 Distribution. Physica A: Statistical Mechanics and its Applications, 606, Article ID: 128059.
https://doi.org/10.1016/j.physa.2022.128059
[47]  Song, I., Ryoung-Park, S., & Yoon, S. (2022). Probability and Random Variables: Theory and Applications. Springer International Publishing.
[48]  Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association, 69, 730-737.
https://doi.org/10.2307/2286009
[49]  Stephens, M. A. (1986). Tests Based on EDF Statistics. In R. B. D’Agostino, & M. A. Stephens (Eds.), Goodness-of-Fit Techniques (pp. 97-193) Marcel Dekker, Inc.
https://doi.org/10.1201/9780203753064-4
[50]  Sudharson, D., & Prabha, D. (2019). Retracted Article: A Novel Machine Learning Approach for Software Reliability Growth Modelling with Pareto Distribution Function. Soft Computing, 23, 8379-8387.
https://doi.org/10.1007/s00500-019-04047-7
[51]  Sudharson, D., Divya, P., Ratheeshkumar, M., Saravanan, A., Nithiyashree, V. K., & Srinithi, J. (2022). A PD ANN Machine Learning Framework for Reliability Optimization in Application Software. In 2022 Smart Technologies, Communication and Robotics (STCR) (pp. 1-4). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/stcr55312.2022.10009626
[52]  Tokhirov, A., Harmáček, J., & Syrovátka, M. (2021). Remittances and Inequality: The Post-Communist Region. Prague Economic Papers, 30, 426-448.
https://doi.org/10.18267/j.pep.776
[53]  Valkanas, K., & Diamandis, P. (2022). Pareto Distribution in Virtual Education: Challenges and Opportunities. Canadian Medical Education Journal, 13, 102-104.
https://doi.org/10.36834/cmej.73511
[54]  World Bank (2022). Gini Index.
https://data.worldbank.org/indicator/
[55]  Xu, T., Sedory, S. A., & Singh, S. (2022). Lowering the Cramer-Rao Lower Bounds of Variance in Randomized Response Sampling. Communications in StatisticsSimulation and Computation, 51, 4112-4126.
https://doi.org/10.1080/03610918.2020.1737874
[56]  Yang, X., & Zhou, P. (2022). Wealth Inequality and Social Mobility: A Simulation-Based Modelling Approach. Journal of Economic Behavior & Organization, 196, 307-329.
https://doi.org/10.1016/j.jebo.2022.02.012
[57]  Zhang, Y., Wu, Y., & Yao, H. (2022). Optimal Health Insurance with Constraints under Utility of Health, Wealth and Income. Journal of Industrial and Management Optimization, 18, 1519-1540.
https://doi.org/10.3934/jimo.2021031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133