全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2025 

Erratum to “Rock Fragmentation Classification Applying Machine Learning Approaches” [Engineering, 15 (2023) 378-395]*

DOI: 10.4236/eng.2025.171001, PP. 1-18

Keywords: Rock Blasting, Load Dump Haul, Image Analysis, Artificial Intelligence, Mine Productivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nature of rock fragmentation affects the downstream mining processes like loading, hauling, and crushing the blasted rock. Therefore, it is important to evaluate rock fragmentation after blasting for choosing or designing optimal strategies for these processes. However, current techniques of rock fragmentation analysis such as sieving, image-based analysis, empirical methods or artificial intelligence-based methods entail different practical challenges, for example, excessive processing time, higher costs, applicability issues in underground environments, user-biasness, accuracy issues, etc. A classification model has been developed by utilizing image analysis techniques to overcome these challenges. The model was tested on about 7500 videos of load-haul-dump (LHD) buckets with blasted material from Malmberget iron ore mine in Sweden. A Kernel-based support vector machine (SVM) method was utilized to extract frames comprising loaded LHD buckets. Then, the blasted rock in the buckets was classified into five distinct categories using the bagging k-nearest neighbor (KNN) technique. The results showed 99.8% and 89.8% accuracy for kernel-based SVM and bagging KNN classifiers, respectively. The developed framework is efficient in terms of the operation time, cost and practicability for different mines and variate amounts of rock masses.

References

[1]  Bamford, T., Esmaeili, K. and Schoellig, A.P. (2017) A Real-Time Analysis of Post-Blast Rock Fragmentation Using UAV Technology. International Journal of Mining, Reclamation and Environment, 31, 439-456.
https://doi.org/10.1080/17480930.2017.1339170
[2]  Tavakol Elahi, A. and Hosseini, M. (2017) Analysis of Blasted Rocks Fragmentation Using Digital Image Processing (Case Study: Limestone Quarry of Abyek Cement Company). International Journal of Geo-Engineering, 8, Article No. 16.
https://doi.org/10.1186/s40703-017-0053-z
[3]  Hunter, G.C., McDermott, C., Miles, N.J., Singh, A. and Scoble, M.J. (1990) A Review of Image Analysis Techniques for Measuring Blast Fragmentation. Mining Science and Technology, 11, 19-36.
https://doi.org/10.1016/0167-9031(90)80003-y
[4]  Badroddin, M., Khoshrou, H. and Siamaki, A. (2013) Prediction of Fragment Size Distribution from Blasting: Artificial Neural Networks Approach. 36th APCOM Symposium Applications of Computers and Operations Research in the Mineral Industry, Porto Alegre, 4-8 November 2013.
[5]  Cho, S.H. and Kaneko, K. (2004) Rock Fragmentation Control in Blasting. Materials Transactions, 45, 1722-1730.
https://doi.org/10.2320/matertrans.45.1722
[6]  Kemeny, J.M., Devgan, A., Hagaman, R.M. and Wu, X. (1993) Analysis of Rock Fragmentation Using Digital Image Processing. Journal of Geotechnical Engineering, 119, 1144-1160.
https://doi.org/10.1061/(asce)0733-9410(1993)119:7(1144)
[7]  Thurley, M.J. (2013) Automated Image Segmentation and Analysis of Rock Piles in an Open-Pit Mine. 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Hobart, 26-28 November 2013, 1-8.
https://doi.org/10.1109/dicta.2013.6691484
[8]  Siddiqui, F., Shah, S. and Behan, M. (2009) Measurement of Size Distribution of Blasted Rock Using Digital Image Processing. Journal of King Abdulaziz University-Engineering Sciences, 20, 81-93.
https://doi.org/10.4197/eng.20-2.4
[9]  Seccatore, J. (2019) A Review of the Benefits for Comminution Circuits Offered by Rock Blasting. REMInternational Engineering Journal, 72, 141-146.
https://doi.org/10.1590/0370-44672017720125
[10]  Onederra, I., Thurley, M.J. and Catalan, A. (2014) Measuring Blast Fragmentation at Esperanza Mine Using High-Resolution 3D Laser Scanning. Mining Technology, 124, 34-36.
https://doi.org/10.1179/1743286314y.0000000076
[11]  Casali, A., Gonzalez, G., Vallebuona, G., Perez, C. and Vargas, R. (2001) Grindability Soft-Sensors Based on Lithological Composition and On-Line Measurements. Minerals Engineering, 14, 689-700.
https://doi.org/10.1016/s0892-6875(01)00065-6
[12]  Roy, M.P., Paswan, R.K., Sarim, M.D., Kumar, S., Jha, R. and Singh, P.K. (2016) Rock Fragmentation by Blasting—A Review. Journal of Mines, Metals and Fuels, 64, 424-431.
[13]  Babaeian, M., Ataei, M., Sereshki, F., Sotoudeh, F. and Mohammadi, S. (2019) A New Framework for Evaluation of Rock Fragmentation in Open Pit Mines. Journal of Rock Mechanics and Geotechnical Engineering, 11, 325-336.
https://doi.org/10.1016/j.jrmge.2018.11.006
[14]  Johansson, D. and Ouchterlony, F. (2011) Fragmentation in Small-Scale Confined Blasting. International Journal of Mining and Mineral Engineering, 3, 72-94.
https://doi.org/10.1504/ijmme.2011.041450
[15]  Wimmer, M., Nordqvist, A.A., Ouchterlony, F. and Selldén, H. (2012) 3D Mapping of Sublevel Caving (SLC) Blast Rings and Ore Flow Disturbances in the LKAB Kiruna Mine. Luleå University of Technology.
[16]  Sanchidrián, J.A., Ouchterlony, F., Segarra, P. and Moser, P. (2014) Size Distribution Functions for Rock Fragments. International Journal of Rock Mechanics and Mining Sciences, 71, 381-394.
https://doi.org/10.1016/j.ijrmms.2014.08.007
[17]  Beyglou, A. (2017) Target Fragmentation for Efficient Loading and Crushing—The Aitik Case. Journal of the Southern African Institute of Mining and Metallurgy, 117, 1053-1062.
https://doi.org/10.17159/2411-9717/2017/v117n11a10
[18]  Ouchterlony, F. (2009) Fragmentation Characterization; the Swebrec Function and Its Use in Blast Engineering. Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting, Granada, 13-17 August 2009, 3-22.
[19]  Chatterjee, S., Bhattacherjee, A., Samanta, B. and Pal, S.K. (2010) Image-Based Quality Monitoring System of Limestone Ore Grades. Computers in Industry, 61, 391-408.
https://doi.org/10.1016/j.compind.2009.10.003
[20]  Gaich, A., Pötsch, M. and Schubert, W. (2017) Digital Rock Mass Characterization 2017—Where Are We Now? What Comes Next? Geomechanics and Tunnelling, 10, 561-566.
https://doi.org/10.1002/geot.201700036
[21]  Campbell, A.D. and Thurley, M.J. (2017) Application of Laser Scanning to Measure Frag-Mentation in Underground Mines. Mining Technology, 126, 240-247.
[22]  Danielsson, M., Ghosh, R., Navarro Miguel, J., Johansson, D. and Schunnesson, H. (2017) Utilizing Production Data to Predict Operational Disturbances in Sublevel Caving. 26th International Symposium on Mine Planning and Equipment Selection, Luleå, 29-31 August 2017, 139-144.
[23]  Maitre, J., Bouchard, K. and Bédard, L.P. (2019) Mineral Grains Recognition Using Computer Vision and Machine Learning. Computers & Geosciences, 130, 84-93.
https://doi.org/10.1016/j.cageo.2019.05.009
[24]  Tessier, J., Duchesne, C. and Bartolacci, G. (2007) A Machine Vision Approach to On-Line Estimation of Run-Of-Mine Ore Composition on Conveyor Belts. Minerals Engineering, 20, 1129-1144.
https://doi.org/10.1016/j.mineng.2007.04.009
[25]  Perez, C.A., Estévez, P.A., Vera, P.A., Castillo, L.E., Aravena, C.M., Schulz, D.A., et al. (2011) Ore Grade Estimation by Feature Selection and Voting Using Boundary Detection in Digital Image Analysis. International Journal of Mineral Processing, 101, 28-36.
https://doi.org/10.1016/j.minpro.2011.07.008
[26]  Yaghoobi, H., Mansouri, H., Ebrahimi Farsangi, M.A. and Nezamabadi-Pour, H. (2019) Determining the Fragmented Rock Size Distribution Using Textural Feature Extraction of Images. Powder Technology, 342, 630-641.
https://doi.org/10.1016/j.powtec.2018.10.006
[27]  Danielsson, M., Söderström, E., Schunnesson, H., Gustafson, A., Fredriksson, H., Johansson, D., et al. (2022) Predicting Rock Fragmentation Based on Drill Monitoring: A Case Study from Malmberget Mine, Sweden. Journal of the Southern African Institute of Mining and Metallurgy, 122, 1-11.
https://doi.org/10.17159/2411-9717/1587/2022
[28]  Ghosh, R., Danielsson, M., Gustafson, A., Falksund, H. and Schunnesson, H. (2017) Assessment of Rock Mass Quality Using Drill Monitoring Technique for Hydraulic ITH Drills. International Journal of Mining and Mineral Engineering, 8, 169-186.
https://doi.org/10.1504/ijmme.2017.085830
[29]  Manzoor, S., Gustafson, A., Schunnesson, H., Tariq, M. and Wettainen, T. (2022) Rock Fragmentation Measurements in Sublevel Caving: Field Tests at LKAB’s Malmberget Mine. In: Potvin, Y., Ed., Caving 2022: Fifth International Conference on Block and Sublevel Caving, Australian Centre for Geomechanics, 381-392.
https://doi.org/10.36487/acg_repo/2205_26
[30]  Bobo, T. (2010) What’s New with the Digital Image Analysis Software Split-Desktop®? Split Engineering, LLC.
[31]  Ohbuchi, R., Osada, K., Furuya, T. and Banno, T. (2008) Salient Local Visual Features for Shape Based 3D Model Retrieval. Proceedings of IEEE Conference on Shape Modeling and Applications, Stony Brook, 4-6 June 2008, 93-102.
[32]  Ohbuchi, R. and Furuya, T. (2008) Accelerating Bag-of-Features Sift Algorithm for 3D Model Retrieval. Proceedings of SAMT Workshop on Semantic 3D Media, Koblenz, 3 December 2008, 23-30.
[33]  Gao, Y. and Dai, Q. (2015) View-Based 3-D Object Retrieval. Morgan Kaufmann. 67-83.
[34]  Furuya, T. and Ohbuchi, R. (2009) Dense Sampling and Fast Encoding for 3D Model Retrieval Using Bag-of-Visual Features. Proceedings of the ACM International Conference on Image and Video Retrieval, Santorini Island, 8-10 July 2009, 1-8.
https://doi.org/10.1145/1646396.1646430
[35]  Wagstaff, K., Cardie, C., Rogers, S. and Schrödl, S. (2001) Constrained k-Means Clustering with Background Knowledge. International Conference on Machine Learning, 1, 577-584.
[36]  Bay, H., Tuytelaars, T. and Van Gool, L. (2006) SURF: Speeded up Robust Features. In: Leonardis, A., Bischof, H. and Pinz, A., Eds., Computer VisionECCV 2006, 404-417.
https://doi.org/10.1007/11744023_32
[37]  Nikam, S.S. (2015) A Comparative Study of Classification Techniques in Data Mining Algorithms. Oriental Journal of Computer Science & Technology, 8, 13-19.
[38]  Cortes, C. and Vapnik, V. (1995) Support-vector Networks. Machine Learning, 20, 273-297.
https://doi.org/10.1007/bf00994018
[39]  Theodoridis, S. and Koutroumbas, K. (2008) Pattern Recognition. Fourth Edition, Elsevier.
[40]  Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer Science+ Business Media.
[41]  Rokach, L. (2009) Ensemble-Based Classifiers. Artificial Intelligence Review, 33, 1-39.
https://doi.org/10.1007/s10462-009-9124-7
[42]  Ho, T.K. (1998) The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832-844.
https://doi.org/10.1109/34.709601
[43]  Altman, N.S. (1992) An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46, 175-185.
https://doi.org/10.1080/00031305.1992.10475879
[44]  Magerman, D.M. (1995) Statistical Decision-Tree Models for Parsing. Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, Cambridge, 26-30 June 1995, 276-283.
https://doi.org/10.3115/981658.981695
[45]  Kamiński, B., Jakubczyk, M. and Szufel, P. (2017) A Framework for Sensitivity Analysis of Decision Trees. Central European Journal of Operations Research, 26, 135-159.
https://doi.org/10.1007/s10100-017-0479-6
[46]  Cawley, G.C. and Talbot, N.L. (2010) On Over-Fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. Journal of Machine Learning Research, 11, 2079-2107.
[47]  Yang, Z., He, B., Liu, Y., Wang, D. and Zhu, G. (2021) Classification of Rock Fragments Produced by Tunnel Boring Machine Using Convolutional Neural Networks. Automation in Construction, 125, Article ID: 103612.
https://doi.org/10.1016/j.autcon.2021.103612
[48]  Wimmer, M., Nordqvist, A., Righetti, E., Petropoulos, N. and Thurley, M. (2015) Analysis of Rock Fragmentation and Its Effect on Gravity Flow at the Kiruna Sublevel Caving Mine. International Symposium on Rock Fragmentation by Blasting, Sydney, 24-26 August 2015, 775-791.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133