全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数学核心素养的球缺体积公式探讨
Segment Volume Formula Based on Mathematical Core Literacy

DOI: 10.12677/ces.2025.131004, PP. 18-25

Keywords: 数学核心素养,定积分,二重积分,三重积分,球缺体积公式
Mathematical Core Literacy
, Definite Integral, Double Integral, Triple Integral, Segment Volume Formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

数学核心素养是数学教师从事中小学数学教育教学工作的基本素养,是数学专业师范生形成教学能力的前提条件。本文从培育数学专业师范生的核心素养出发探讨怎样求球缺体积公式,使学生学会利用所学专业知识多角度分析和解决数学问题,加深对《数学分析》课程中积分学内容的整体理解,使所学积分学知识形成一个连贯的整体,提高对积分学内容的认识。进一步培养学生的直观想象、逻辑推理、数学运算等数学核心素养。
Mathematical core literacy is the basic literacy for mathematics teachers to engage in mathematics education and teaching in primary and secondary schools, and is a prerequisite for normal students majoring in mathematics to form teaching abilities. Segment volume formula is discussed from cultivating the core literacy of normal students majoring in mathematics in the paper, so that students can use their professional knowledge to analyze and solve mathematical problems from multiple perspectives, deepen their overall understanding of the integration content in the course of Mathematical Analysis, form a coherent whole of the integration knowledge learned, and improve their understanding of the integration content, further cultivate students’ mathematical core literacy such as intuitive imagination, logical reasoning, and mathematical operations.

References

[1]  华东师范大学数学科学学院, 编. 数学分析[M]. 第5版. 北京: 高等教育出版社, 2019.
[2]  张伟. 祖暅原理的由来及证明[J]. 重庆教育学院学报, 2010, 23(3): 113-115.
[3]  苏涵. 应用祖暅原理推导球缺体积[J]. 中学生数学, 2018(13): 36-37.
[4]  屈伸. 球缺体积公式的一种推导方法[J]. 中学生数学, 2021(19): 29-30.
[5]  戴习民, 朱晓临, 张仁琼. 球缺体积公式的多种证明[J]. 大学数学, 2016, 32(2): 100-101.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133