全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多元数据的校园周边交叉口Synchro信号优化研究
Synchro Signal Optimization Study for Campus Surrounding Intersections Based on Multi-Source Data

DOI: 10.12677/ojtt.2025.141003, PP. 17-27

Keywords: 交通仿真,Synchro,交通工程,信号配时优化
Traffic Simulation
, Synchro, Traffic Engineering, Signal Timing Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着校园周边交通量的增加,交叉口的交通拥堵问题愈发严重,对行人和车辆的通行造成了较大困扰。为有效提高交叉口的通行效率,减少交通延误与排队长度,本文基于多元数据,利用Synchro交通仿真系统对校园周边的海棠路与丁香路交叉口进行了信号优化研究。通过对现状交通流量数据的收集与分析,建立交叉口的仿真模型,评估现有信号配时方案的不足之处。基于流量/容量比率(V/C ratio)、控制延误(Control Delay)和服务水平(LOS)等关键指标,对信号配时方案进行了调整与优化。优化后的信号配时方案显著降低了高峰期的排队长度,改善了各交通流向的通行效率,并提高了整体的服务水平。结果表明:燃料消耗由155升降低至105升,减少了约32%,优化效果明显;停车次数从1359次/小时减少至1121次/小时,降低了约17.5%;总延误时间从549.2秒缩短至520.1秒,减少了约5.3%;交叉口的总体服务水平由E提升为D。研究表明,基于多元数据的Synchro信号优化对缓解校园周边交叉口的交通拥堵、提高通行效率和道路安全具有重要作用。
With the increasing traffic volume around campuses, congestion at intersections has become more severe, causing significant challenges for pedestrians and vehicles. To effectively improve the efficiency of intersection traffic flow and reduce delays and queue lengths, this study conducts a signal optimization analysis for the intersection of Haitang Road and Dingxiang Road near a campus, using the Synchro traffic simulation system and multi-source data. By collecting and analyzing the existing traffic flow data, a simulation model of the intersection was established to evaluate the shortcomings of the current signal timing plan. Based on key indicators such as volume-to-capacity ratio (V/C ratio), control delay, and level of service (LOS), adjustments and optimizations were made to the signal timing. The optimized signal timing plan significantly reduced queue lengths during peak hours, improved traffic flow efficiency across all directions, and enhanced the overall level of service. Results showed that fuel consumption was reduced from 155 liters to 105 liters, a decrease of approximately 32%; the number of stops decreased from 1359 stops/hour to 1121 stops/hour, reducing by about 17.5%; and total delay time was reduced from 549.2 seconds to 520.1 seconds, a decrease of approximately 5.3%. The overall level of service of the intersection was improved from E to D. The study indicates that Synchro signal optimization based on multi-source data plays a crucial role in alleviating congestion, enhancing traffic efficiency, and improving road safety at campus-area intersections.

References

[1]  叶圳. 基于Synchro系统的单点交叉口交通信号优化[J]. 交通与运输, 2023, 39(5): 100-104.
[2]  王安格, 邓明君, 蒋雪晴, 曹杨柳. 基于VISSIM的区域交通组织优化设计——以新余市渝水区劳动路与青年路交叉口及其附近区域为例[J]. 河北科技师范学院学报, 2021, 35(4): 69-78.
[3]  姬利娜, 晏永廷, 晏子. 城市道路平面交叉口交通组织优化设计[J]. 交通工程, 2022, 22(1): 60-66.
[4]  刘澜, 封宗荣. 基于Synchro仿真的城市干道交通信号协调控制优化[J]. 公路交通科技, 2022, 39(3): 167-175.
[5]  雷馥鸣. 城市道路交叉口交通组织优化设计[J]. 智能建筑与智慧城市, 2022(1): 145-147.
[6]  姜安培, 吴海俊, 赵慧. 基于双层模型与仿真的区域交通组织优化研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(6): 1008-1012.
[7]  Cheng, R., Qiao, Z., Li, J. and Huang, J. (2023) Traffic Signal Timing Optimization Model Based on Video Surveillance Data and Snake Optimization Algorithm. Sensors, 23, Article 5157.
https://doi.org/10.3390/s23115157
[8]  Fu, T., Wang, L., Garg, S., Hossain, M.S., Yu, Q. and Hu, H. (2024) Adaptive Signal Light Timing for Regional Traffic Optimization Based on Graph Convolutional Network Empowered Traffic Forecasting. Information Fusion, 103, Article ID: 102072.
https://doi.org/10.1016/j.inffus.2023.102072
[9]  Huang, H., Chen, Z., Li, B., Ma, Q. and He, H. (2024) FeSTGCN: A Frequency-Enhanced Spatio-Temporal Graph Convolutional Network for Traffic Flow Prediction under Adaptive Signal Timing. Applied Intelligence, 54, 4848-4864.
https://doi.org/10.1007/s10489-024-05401-5
[10]  Wang, H., Yuan, Y., Yang, X.T., Zhao, T. and Liu, Y. (2022) Deep Q Learning-Based Traffic Signal Control Algorithms: Model Development and Evaluation with Field Data. Journal of Intelligent Transportation Systems, 27, 314-334.
https://doi.org/10.1080/15472450.2021.2023016
[11]  沈国栋, 龙光, 杨伟, 等. 交叉口网联车速度与信号协同优化控制[J]. 重庆交通大学学报(自然科学版), 2024, 43(10): 70-78, 89.
[12]  宋浪, 王健, 杨璐, 等. 平行流交叉口车道控制与信号配时组合优化[J]. 浙江大学学报(工学版), 2024, 58(8): 1647-1658.
[13]  杨伟, 沈国栋, 龙光, 等. 基于浮动车轨迹数据的干线信号协调配时优化[J]. 广西大学学报(自然科学版), 2024, 49(1): 132-146.
[14]  邢淋丽, 彭艳梅. 学校周边交通拥堵治理研究——以南京市为例[J]. 交通程, 2024, 24(10): 32-36.
[15]  张鹏, 顾云翔, 孙超, 等. 基于最小油耗的货车车速与信号配时协同优化模型[J]. 交通运输系统工程与信息, 2023, 23(2): 84-91, 99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133