|
基于北斗的高精度监测系统在内蒙古高速铁路中的应用实例
|
Abstract:
随着我国高速铁路的迅速发展,对高精度智能监测与检测技术的需求日益增长,尤其是复杂环境下的铁路结构安全性保障成为亟需解决的重要课题。本研究旨在开发一套高速铁路北斗基准动态维持及监测服务云平台,可适应内蒙古冻土、高寒、干旱、风沙、高海拔等复杂环境。该平台集成了动态维持、控制测量和精密监测技术,可有效确保基准网稳定,应对遮挡和干扰,实现高精度的变形监测与检测。本次应用选取集大原高速铁路乌兰察布段布设测点,完成了6座监测站及4座基准站的安装,现已开始数据采集;并采用北斗 + 惯性导航模式,开展了轨道几何状态快速测量实验。经与全站仪结果对比,该系统检测效率较传统方法提升了三倍以上,结果可靠且达到国内领先水平。该技术体系在该线路上的显著成效,为内蒙古地区复杂环境的铁路监测技术提供了新思路,为全国范围内的高速铁路监测推广应用奠定了基础,也标志着高精度智能监测技术在铁路行业的应用进入了新发展阶段。
With the rapid development of China’s high-speed railways, the demand for high-precision intelligent monitoring and detection technology is growing. Ensuring the safety of railway structures in complex environments has become an important issue that needs to be resolved urgently. This study aims to develop a Beidou benchmark dynamic maintenance and monitoring service cloud platform for high-speed railways, which can adapt to the complex environments of Inner Mongolia, such as permafrost, cold, drought, sand, and high altitude. The platform integrates dynamic maintenance, control measurement, and precision monitoring technologies to effectively ensure the stability of the benchmark network, deal with occlusion and interference, and achieve high-precision deformation monitoring and detection. The application selected for this project is the Ulanqab section of the Jidaoyuan High-Speed Railway, where 6 monitoring stations and 4 benchmark stations have been installed, and data collection has begun. A Beidou + inertial navigation mode has been used to carry out rapid measurement experiments on the geometric state of the track. Compared with the results of the total station instrument, the detection efficiency of this system has increased by more than three times compared to traditional methods, and the results are reliable and at the leading level in China. The significant effectiveness of this technical system on this line has provided new ideas for railway monitoring technology in the complex environment of Inner Mongolia, laid the foundation for the promotion and application of high-speed railway monitoring across the country, and also marked that the application of high-precision intelligent monitoring technology in the railway industry has entered a new stage of development.
[1] | 陈麓阳, 祝继常, 周进, 等. 高普平行通道列车开行结构调整优化模型研究[J]. 铁道运输与经济, 2024, 46(9): 33-40. |
[2] | Wenjia, W. (2024) The Application of Bei Dou Navigation Satellite System in Slope Displacement Monitoring. |
[3] | 郭宇. 高速铁路路基不均匀沉降及其演化对车辆-轨道耦合系统力学性能的影响[D]: [博士学位论文]. 成都: 西南交通大学, 2018. |
[4] | 刘伟. 基于车辆响应与机器学习的无砟轨道路基沉降识别方法[D]: [硕士学位论文]. 成都: 西南交通大学, 2022. |
[5] | 赵洪洋. 城市轨道交通预制道岔板整体道床高精度施工关键技术研究[J]. 工程技术研究, 2022, 7(16): 77-79. |
[6] | 张登科, 赵磊, 何远鹏, 等. 基于CPⅢ测量控制网的轨道精调技术及在城市轨道交通环保升级中的应用研究[J]. 测绘通报, 2021(S1): 226-232. |
[7] | 孙海富. 中国高速铁路安全保障体系[J]. 铁道工程学报, 2021, 38(6): 93-97. |
[8] | 孙澳, 张秋昭, 张云龙, 等. 基于状态域的GNSS/加速度计变形监测突变故障检测方法[J]. 河南理工大学学报(自然科学版), 2024, 43(5): 79-86. |
[9] | 李广宇, 张云龙. 北斗-InSAR融合的铁路沉降监测[J]. 测绘通报, 2022(S2): 1-7. |
[10] | 张云龙. 严寒地区铁路运营期路基BDS远程变形监测[J]. 铁道勘察, 2020, 46(6): 7-11. |
[11] | 彭松, 刘建坤, 张云龙, 等. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析[J]. 科学技术与工程, 2022, 22(33): 14898-14906. |
[12] | 程春. 北斗卫星导航系统的精密轨道确定及其完好性监测技术研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2020. |