|
基于WS2/AlN异质双层的第一性原理研究
|
Abstract:
基于密度泛函理论的第一性原理计算研究了WS2/AlN异质双层的电子结构和能带性质。在本文所考虑的六种WS2/AlN异质双层体系中,A1堆叠构型(W原子排列在N原子上,S原子排列在Al原子上)是最稳定的结构。所有WS2/AlN异质双层体系都具有Ⅱ型能带结构,其本征带隙值范围为1.45~1.82 eV,可以有效地分离光和电子–空穴对。从我们的研究结果来看,可以通过不同的堆叠方式来调节电子性质和带隙宽度,同时还能保证Ⅱ型能带对准。对结合能和层间距的计算也揭示了稳定性与不同堆叠方式之间的关系。这种控制表明了WS2/AlN异质结构在未来原子尺度的电子器件中的应用潜能。
First-principles calculations based on density functional theory (DFT) have been employed to investigate the electronic structure and band properties of WS2/AlN heterobilayers. Among the six WS2/AlN heterobilayers configurations considered in this study, the A1 stacking configuration (where W atoms are aligned above N atoms and S atoms are aligned above Al atoms) is identified as the most stable structure. All WS2/AlN heterobilayer systems exhibit type-II band alignment, with intrinsic band gap values ranging from 1.45 eV to 1.82 eV, enabling efficient separation of photons and electron-hole pairs. According to our findings, electronic properties and band gap widths can be tuned through different stacking configurations while maintaining type-II band alignment. Calculations of binding energy and interlayer spacing also reveal the relationship between stability and various stacking patterns. This degree of control indicates the potential application of WS2/AlN heterobilayers in future atomic-scale electronic devices.
[1] | Huang, G., Chen, Z., Li, M., Yang, B., Xin, M., Li, S., et al. (2016) Surface Functional Modification of Graphene and Graphene Oxide. Acta Chimica Sinica, 74, 789-799. https://doi.org/10.6023/a16070360 |
[2] | Li, Y., Li, J.L., Zhu, Q.S., et al. (2021) Research Progress in Graphene Based Thermal Conductivity Materials. Journal of Materials Engineering, 49, 1-13. |
[3] | Mahmood, J., Li, F., Jung, S., Okyay, M.S., Ahmad, I., Kim, S., et al. (2017) An Efficient and pH-Universal Ruthenium-Based Catalyst for the Hydrogen Evolution Reaction. Nature Nanotechnology, 12, 441-446. https://doi.org/10.1038/nnano.2016.304 |
[4] | Mahmood, J., Lee, E.K., Jung, M., Shin, D., Jeon, I., Jung, S., et al. (2015) Nitrogenated Holey Two-Dimensional Structures. Nature Communications, 6, Article No. 6486. https://doi.org/10.1038/ncomms7486 |
[5] | Yang, S., Li, W., Ye, C., Wang, G., Tian, H., Zhu, C., et al. (2017) C3N—A 2D Crystalline, Hole‐Free, Tunable‐Narrow‐bandgap Semiconductor with Ferromagnetic Properties. Advanced Materials, 29, Article ID: 1605625. https://doi.org/10.1002/adma.201605625 |
[6] | Mahmood, J., Lee, E.K., Jung, M., Shin, D., Choi, H., Seo, J., et al. (2016) Two-Dimensional Polyaniline (C3N) from Carbonized Organic Single Crystals in Solid State. Proceedings of the National Academy of Sciences of the United States of America, 113, 7414-7419. https://doi.org/10.1073/pnas.1605318113 |
[7] | Ong, W., Tan, L., Ng, Y.H., Yong, S. and Chai, S. (2016) Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chemical Reviews, 116, 7159-7329. https://doi.org/10.1021/acs.chemrev.6b00075 |
[8] | Cao, S., Low, J., Yu, J. and Jaroniec, M. (2015) Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 27, 2150-2176. https://doi.org/10.1002/adma.201500033 |
[9] | Chhowalla, M., Shin, H.S., Eda, G., Li, L., Loh, K.P. and Zhang, H. (2013) The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry, 5, 263-275. https://doi.org/10.1038/nchem.1589 |
[10] | Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., et al. (2015) Recent Advances in Two-Dimensional Materials Beyond Graphene. ACS Nano, 9, 11509-11539. https://doi.org/10.1021/acsnano.5b05556 |
[11] | Jiang, J., Zhao, Z., Gao, J., Li, T., Li, M., Zhou, D., et al. (2022) Nitrogen Vacancy-Modulated Peroxymonosulfate Nonradical Activation for Organic Contaminant Removal via High-Valent Cobalt-Oxo Species. Environmental Science & Technology, 56, 5611-5619. https://doi.org/10.1021/acs.est.2c01913 |
[12] | Liu, C., Dai, H., Tan, C., Pan, Q., Hu, F. and Peng, X. (2022) Photo-Fenton Degradation of Tetracycline over Z-Scheme Fe-G-C3N4/Bi2WO6 Heterojunctions: Mechanism Insight, Degradation Pathways and DFT Calculation. Applied Catalysis B: Environmental, 310, Article ID: 121326. https://doi.org/10.1016/j.apcatb.2022.121326 |
[13] | Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010) A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics, 132, Article ID: 154104. https://doi.org/10.1063/1.3382344 |
[14] | Mollaamin, F. and Monajjemi, M. (2023) Tailoring and Functionalizing the Graphitic-Like Gan and Gap Nanostructures as Selective Sensors for NO, NO2, and NH3 Adsorbing: A DFT Study. Journal of Molecular Modeling, 29, Article No. 170. https://doi.org/10.1007/s00894-023-05567-8 |
[15] | Liu, H., Chen, W., Zhang, Z., Wu, K. and Tang, Z. (2023) Comparison of Gas-Sensitive Properties of Au, Ag and Cu Metal-Doped Gannt for SF6 Decomposition Gases. Applied Surface Science, 620, Article ID: 156811. https://doi.org/10.1016/j.apsusc.2023.156811 |
[16] | Ismail, P.M., Ali, S., Raziq, F., Bououdina, M., Abu-Farsakh, H., Xia, P., et al. (2023) Stable and Robust Single Transition Metal Atom Catalyst for CO2 Reduction Supported on Defective WS2. Applied Surface Science, 624, Article ID: 157073. https://doi.org/10.1016/j.apsusc.2023.157073 |
[17] | Wang, H., Xu, J., Zhang, Q., Hu, S., Zhou, W., Liu, H., et al. (2022) Super‐hybrid Transition Metal Sulfide Nanoarrays of CO3S4 Nanosheet/P‐Doped WS2 Nanosheet/Co9S8 Nanoparticle with Pt‐like Activities for Robust All‐Ph Hydrogen Evolution. Advanced Functional Materials, 32, Article ID: 2112362. https://doi.org/10.1002/adfm.202112362 |
[18] | Ju, L., Dai, Y., Wei, W., Li, M. and Huang, B. (2018) DFT Investigation on Two-Dimensional GeS/WS2 Van Der Waals Heterostructure for Direct Z-Scheme Photocatalytic Overall Water Splitting. Applied Surface Science, 434, 365-374. https://doi.org/10.1016/j.apsusc.2017.10.172 |