全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LSTM模型的甘肃电力市场现货价格预测与最佳交易决策研究
Research on Spot Price Forecasting and Best Trading Decision in Gansu Province Electricity Market Based on LSTM Modeling

DOI: 10.12677/hjdm.2025.151003, PP. 26-39

Keywords: LSTM模型,电力市场,现货价格预测,最佳交易决策,风险溢价
LSTM Model
, Electricity Market, Spot Price Prediction, Optimal Trading Decision, Risk Premium

Full-Text   Cite this paper   Add to My Lib

Abstract:

甘肃电力市场由于新能源接入比例的提升增加了市场的不确定性和波动性。本文首先从数据预处理与特征工程入手,对2024年上半年的现货价格数据进行平滑处理,捕捉短期和长期的价格趋势。随后建立了高精度的长短期记忆网络模型(Long Short-term Memory, LSTM)对甘肃电力市场未来7天和15天的平均实时和日前现货价格进行了预测,结果表明LSTM模型在训练集和测试集上的预测准确度较高。其次,基于预测结果和风险溢价的对数收益分析,为市场交易建立了最佳交易决策模型;以案例分析的方式展示了如何利用预测价格与实际价格的差异来评估市场风险和制定相应的交易策略。研究表明,在高比例新能源电网背景下,利用先进的机器学习技术可以对电力现货市场价格进行准确预测,本文的最佳交易决策模型能够提升市场交易决策的科学性及与监测预警支持能力。
The increase in the proportion of new energy access in the Gansu electricity market has increased market uncertainty and volatility. Starting with data preprocessing and feature engineering, this paper smoothed the spot price data for the first half of 2024 to capture short-term and long-term price trends. Subsequently, a high-precision Long Short-Term Memory (LSTM) network model was established to predict the average real-time and intraday spot prices of the Gansu electricity market for the next 7 and 15 days. The results showed that the LSTM model had high prediction accuracy on both the training and testing sets. Secondly, based on the prediction results and logarithmic return analysis of risk premium, an optimal trading decision model was established for market trading; This case study demonstrates how to use the difference between predicted prices and actual prices to assess market risks and develop corresponding trading strategies. Research has shown that in the context of a high proportion of new energy grids, advanced machine learning techniques can be used to accurately predict electricity spot market prices. The optimal trading decision model proposed in this paper can enhance the scientific nature of market trading decisions and support monitoring and early warning capabilities.

References

[1]  杨春祥, 张天宇, 张晓斌, 等. 适应高比例新能源电网的甘肃双边现货市场机制设计与运行分析[J]. 电网技术, 2022, 46(1): 63-69.
[2]  中共中央国务院. 关于进一步深化电力体制改革的若干意见(中发〔2015〕9号) [Z]. 2015.
[3]  徐可琪. 高比例新能源下的市场电价预测及风险评估与分析[D]: [硕士学位论文]. 北京: 华北电力大学, 2023.
[4]  陈振寰, 杨春祥, 张柏林, 等. 甘肃电力现货市场双边交易机制设计[J]. 全球能源互联网, 2020, 3(5): 441-450.
[5]  Cruz May, E., Bassam, A., Ricalde, L.J., Escalante Soberanis, M.A., Oubram, O., May Tzuc, O., et al. (2022) Global Sensitivity Analysis for a Real-Time Electricity Market Forecast by a Machine Learning Approach: A Case Study of Mexico. International Journal of Electrical Power & Energy Systems, 135, Article ID: 107505.
https://doi.org/10.1016/j.ijepes.2021.107505
[6]  Wu, J., Wang, J. and Kong, X. (2024) Intelligent Strategic Bidding in Competitive Electricity Markets Using Multi-Agent Simulation and Deep Reinforcement Learning. Applied Soft Computing, 152, Article ID: 111235.
https://doi.org/10.1016/j.asoc.2024.111235
[7]  Imani, M.H., Bompard, E., Colella, P. and Huang, T. (2021) Forecasting Electricity Price in Different Time Horizons: An Application to the Italian Electricity Market. IEEE Transactions on Industry Applications, 57, 5726-5736.
https://doi.org/10.1109/tia.2021.3114129
[8]  Magalhães, B.G., Bento, P.M.R., Pombo, J.A.N., Calado, M.R.A. and Mariano, S.J.P.S. (2023) Spot Price Forecasting for Best Trading Strategy Decision Support in the Iberian Electricity Market. Expert Systems with Applications, 224, Article ID: 120059.
https://doi.org/10.1016/j.eswa.2023.120059
[9]  袁秀芳. SVR模型及其用于经济数据预测的研究[D]: [硕士学位论文]. 南充: 西华师范大学, 2016.
[10]  章维维. 基于ARIMA修正模型的电力市场价格预测研究[D]: [硕士学位论文]. 吉林: 东北电力大学, 2018.
[11]  Bashir, T., Haoyong, C., Tahir, M.F. and Liqiang, Z. (2022) Short Term Electricity Load Forecasting Using Hybrid Prophet-LSTM Model Optimized by BPNN. Energy Reports, 8, 1678-1686.
https://doi.org/10.1016/j.egyr.2021.12.067
[12]  Rafi, S.H., Nahid-Al-Masood, Deeba, S.R. and Hossain, E. (2021) A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network. IEEE Access, 9, 32436-32448.
https://doi.org/10.1109/access.2021.3060654
[13]  陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.
[14]  查云龙, 茅玉龙, 卜宇, 等. 基于BasicNet-LSTM的短期电力负荷预测模型构建[J]. 中国设备工程, 2024(11): 139-141.
[15]  勾玄, 肖先勇. 基于经验模式分解与LSTM神经网络的短期电价预测模型[J]. 西安理工大学学报, 2020, 36(1): 129-134.
[16]  Varanasi, J. and Tripathi, M.M. (2022) Electricity Price Forecasting Using LSTM Network and K-Means Clustering by Considering the Effect of Wind Power Generation. In: Chanda, C.K., Szymanski, J.R., Sikander, A., Mondal, P.K. and Acharjee, D., Eds., Advanced Energy and Control Systems, Springer, 29-41.
https://doi.org/10.1007/978-981-16-7274-3_3
[17]  Chang, Z., Zhang, Y. and Chen, W. (2019) Electricity Price Prediction Based on Hybrid Model of Adam Optimized LSTM Neural Network and Wavelet Transform. Energy, 187, Article ID: 115804.
https://doi.org/10.1016/j.energy.2019.07.134
[18]  Zhou, S., Zhou, L., Mao, M., Tai, H. and Wan, Y. (2019) An Optimized Heterogeneous Structure LSTM Network for Electricity Price Forecasting. IEEE Access, 7, 108161-108173.
https://doi.org/10.1109/access.2019.2932999
[19]  殷豪, 丁伟锋, 陈顺, 等. 基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测[J]. 电网技术, 2022, 46(2): 472-480.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133