|
Sema3F在神经系统中作用的研究
|
Abstract:
本文通过综述的形式,论述了保守轴突导向因子Semaphorins的信号蛋白Semaphorins3F (Sema3F)的在神经系统中作用的研究。基于对Sema3F的概述,我们对神经的作用进行了系统总结。在神经发育的过程中,Sema3F作为调节因子,参与皮层椎体神经元树突密度的调节及诱导树突消除和树突细胞体的回缩等多种功能。同样在对Sema3F在感觉神经中的作用的研究中,我们发现其对于嗅觉系统、视觉、内耳和牙神经等有着重要的作用。本文还探讨了Sema3F对于包括自闭症、精神分裂症和癫痫等神经系统疾病的作用。我们认为,Sema3F在神经元的发育、感觉神经以及多种神经系统疾病中均起着重要的作用。
This article, in the form of a review, discusses the research on the role of the semaphorin family member Semaphorin 3F (Sema3F), a conserved axon guidance molecule, in the nervous system. Based on an overview of Sema3F, we systematically summarize its effects on neurons. During the process of neural development, Sema3F acts as a regulatory factor, participating in the modulation of dendritic density in cortical pyramidal neurons, as well as inducing dendritic elimination and retraction of dendritic cell bodies, among other functions. Similarly, in studies on the role of Sema3F in sensory neurons, we have found that it plays an important role in the olfactory system, vision, inner ear, and dental nerves. The article also explores the role of Sema3F in various neurological disorders, including autism, schizophrenia, and epilepsy. We believe that Sema3F plays a significant role in the development of neurons, sensory neurons, and a variety of neurological diseases.
[1] | Jin, Z., Chau, M.D. and Bao, Z. (2005) Sema3D, Sema3F, and Sema5A Are Expressed in Overlapping and Distinct Patterns in Chick Embryonic Heart. Developmental Dynamics, 235, 163-169. https://doi.org/10.1002/dvdy.20614 |
[2] | Xiang, R., Hensel, C.H., Garcia, D.K., Carlson, H.C., Kok, K., Daly, M.C., et al. (1996) Isolation of the Human Semaphorin III/F Gene (SEMA3F) at Chromosome 3p21, a Region Deleted in Lung Cancer. Genomics, 32, 39-48. https://doi.org/10.1006/geno.1996.0074 |
[3] | Demyanenko, G.P., Mohan, V., Zhang, X., Brennaman, L.H., Dharbal, K.E.S., Tran, T.S., et al. (2014) Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling. The Journal of Neuroscience, 34, 11274-11287. https://doi.org/10.1523/jneurosci.1774-14.2014 |
[4] | Duncan, B.W., Mohan, V., Wade, S.D., Truong, Y., Kampov-Polevoi, A., Temple, B.R., et al. (2021) Semaphorin3F Drives Dendritic Spine Pruning through Rho-Gtpase Signaling. Molecular Neurobiology, 58, 3817-3834. https://doi.org/10.1007/s12035-021-02373-2 |
[5] | Mohan, V., Wyatt, E.V., Gotthard, I., Phend, K.D., Diestel, S., Duncan, B.W., et al. (2018) Neurocan Inhibits Semaphorin 3F Induced Dendritic Spine Remodeling through NrCAM in Cortical Neurons. Frontiers in Cellular Neuroscience, 12, Article 346. https://doi.org/10.3389/fncel.2018.00346 |
[6] | Curreli, S., Wong, B.S., Latinovic, O., Konstantopoulos, K. and Stamatos, N.M. (2016) Class 3 Semaphorins Induce F-Actin Reorganization in Human Dendritic Cells: Role in Cell Migration. Journal of Leukocyte Biology, 100, 1323-1334. https://doi.org/10.1189/jlb.2a1114-534r |
[7] | Yamada, R.X., Matsuki, N. and Ikegaya, Y. (2006) Soluble Guanylyl Cyclase Inhibitor Prevents Sema3F-Induced Collapse of Axonal and Dendritic Growth Cones of Dentate Granule Cells. Biological and Pharmaceutical Bulletin, 29, 796-798. https://doi.org/10.1248/bpb.29.796 |
[8] | Bertoldi, M.L., Zalosnik, M.I., Fabio, M.C., Aja, S., Roth, G.A., Ronnett, G.V., et al. (2019) Mecp2 Deficiency Disrupts Kainate-Induced Presynaptic Plasticity in the Mossy Fiber Projections in the Hippocampus. Frontiers in Cellular Neuroscience, 13, Article 286. https://doi.org/10.3389/fncel.2019.00286 |
[9] | Yang, G., Qu, X., Zhang, J., Zhao, W. and Wang, H. (2012) Sema3F Downregulates p53 Expression Leading to Axonal Growth Cone Collapse in Primary Hippocampal Neurons. International Journal of Clinical and Experimental Pathology, 5, 634-641. |
[10] | Ng, T., Hor, C.H.H., Chew, B., Zhao, J., Zhong, Z., Ryu, J.R., et al. (2016) Neuropilin 2 Signaling Is Involved in Cell Positioning of Adult-Born Neurons through Glycogen Synthase Kinase-3β (GSK3β). Journal of Biological Chemistry, 291, 25088-25095. https://doi.org/10.1074/jbc.m116.755215 |
[11] | Wang, Q., Chiu, S., Koropouli, E., Hong, I., Mitchell, S., Easwaran, T.P., et al. (2017) Neuropilin-2/plexina3 Receptors Associate with Glua1 and Mediate Sema3f-Dependent Homeostatic Scaling in Cortical Neurons. Neuron, 96, 1084-1098.e7. https://doi.org/10.1016/j.neuron.2017.10.029 |
[12] | Roffers-Agarwal, J. and Gammill, L.S. (2009) Neuropilin Receptors Guide Distinct Phases of Sensory and Motor Neuronal Segmentation. Development, 136, 1879-1888. https://doi.org/10.1242/dev.032920 |
[13] | York, J.R., Yuan, T., Lakiza, O. and McCauley, D.W. (2018) An Ancestral Role for Semaphorin3f-Neuropilin Signaling in Patterning Neural Crest within the New Vertebrate Head. Development, 145, Article 164780. https://doi.org/10.1242/dev.164780 |
[14] | Yamauchi, K., Mizushima, S., Tamada, A., Yamamoto, N., Takashima, S. and Murakami, F. (2009) FGF8 Signaling Regulates Growth of Midbrain Dopaminergic Axons by Inducing Semaphorin3F. The Journal of Neuroscience, 29, 4044-4055. https://doi.org/10.1523/jneurosci.4794-08.2009 |
[15] | Matsuda, I., Fukaya, M., Nakao, H., Nakao, K., Matsumoto, H., Mori, K., et al. (2010) Development of the Somatosensory Cortex, the Cerebellum, and the Main Olfactory System in Semaphorin3F Knockout Mice. Neuroscience Research, 66, 321-329. https://doi.org/10.1016/j.neures.2009.12.001 |
[16] | Helmbrecht, M.S., Soellner, H., Castiblanco-Urbina, M.A., Winzeck, S., Sundermeier, J., Theis, F.J., et al. (2015) A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring. PLOS ONE, 10, e0123643. https://doi.org/10.1371/journal.pone.0123643 |
[17] | Sahay, A., Molliver, M.E., Ginty, D.D. and Kolodkin, A.L. (2003) Semaphorin 3F Is Critical for Development of Limbic System Circuitry and Is Required in Neurons for Selective CNS Axon Guidance Events. The Journal of Neuroscience, 23, 6671-6680. https://doi.org/10.1523/jneurosci.23-17-06671.2003 |
[18] | Cloutier, J., Sahay, A., Chang, E.C., Tessier-Lavigne, M., Dulac, C., Kolodkin, A.L., et al. (2004) Differential Requirements for Semaphorin3F and Slit-1 in Axonal Targeting, Fasciculation, and Segregation of Olfactory Sensory Neuron Projections. The Journal of Neuroscience, 24, 9087-9096. https://doi.org/10.1523/jneurosci.2786-04.2004 |
[19] | Takeuchi, H., Inokuchi, K., Aoki, M., Suto, F., Tsuboi, A., Matsuda, I., et al. (2010) Sequential Arrival and Graded Secretion of Sema3F by Olfactory Neuron Axons Specify Map Topography at the Bulb. Cell, 141, 1056-1067. https://doi.org/10.1016/j.cell.2010.04.041 |
[20] | Low, L.K., Liu, X., Faulkner, R.L., Coble, J. and Cheng, H. (2008) Plexin Signaling Selectively Regulates the Stereotyped Pruning of Corticospinal Axons from Visual Cortex. Proceedings of the National Academy of Sciences, 105, 8136-8141. https://doi.org/10.1073/pnas.0803849105 |
[21] | Vilbig, R., Cosmano, J., Giger, R. and Rochlin, M.W. (2004) Distinct Roles for Sema3a, Sema3f, and an Unidentified Trophic Factor in Controlling the Advance of Geniculate Axons to Gustatory Lingual Epithelium. Journal of Neurocytology, 33, 591-606. https://doi.org/10.1007/s11068-005-3329-8 |
[22] | Scott, M.K., Yue, J., Biesemeier, D.J., Lee, J.W. and Fekete, D.M. (2019) Expression of Class III Semaphorins and Their Receptors in the Developing Chicken (Gallus Gallus) Inner Ear. Journal of Comparative Neurology, 527, 1196-1209. https://doi.org/10.1002/cne.24595 |
[23] | Sijaona, A., Luukko, K., Kvinnsland, I.H. and Kettunen, P. (2011) Expression Patterns of Sema3f, Plexina4,-A3, Neuropilin1 and-2 in the Postnatal Mouse Molar Suggest Roles in Tooth Innervation and Organogenesis. Acta Odontologica Scandinavica, 70, 140-148. https://doi.org/10.3109/00016357.2011.600708 |
[24] | Mohan, V., Sullivan, C.S., Guo, J., Wade, S.D., Majumder, S., Agarwal, A., et al. (2018) Temporal Regulation of Dendritic Spines through Nrcam-Semaphorin3f Receptor Signaling in Developing Cortical Pyramidal Neurons. Cerebral Cortex, 29, 963-977. https://doi.org/10.1093/cercor/bhy004 |
[25] | Ziak, J., Weissova, R., Jeřábková, K., Janikova, M., Maimon, R., Petrasek, T., et al. (2020) CRMP 2 Mediates Sema3F-dependent Axon Pruning and Dendritic Spine Remodeling. EMBO Reports, 21, e48512. https://doi.org/10.15252/embr.201948512 |
[26] | Degano, A.L., Pasterkamp, R.J. and Ronnett, G.V. (2009) Mecp2 Deficiency Disrupts Axonal Guidance, Fasciculation, and Targeting by Altering Semaphorin3F Function. Molecular and Cellular Neuroscience, 42, 243-254. https://doi.org/10.1016/j.mcn.2009.07.009 |
[27] | Gant, J.C., Thibault, O., Blalock, E.M., Yang, J., Bachstetter, A., Kotick, J., et al. (2009) Decreased Number of Interneurons and Increased Seizures in Neuropilin 2 Deficient Mice: Implications for Autism and Epilepsy. Epilepsia, 50, 629-645. https://doi.org/10.1111/j.1528-1167.2008.01725.x |
[28] | Aigrot, M., Barthelemy, C., Moyon, S., Dufayet-Chaffaud, G., Izagirre-Urizar, L., Gillet-Legrand, B., et al. (2022) Genetically Modified Macrophages Accelerate Myelin Repair. EMBO Molecular Medicine, 14, e14759. https://doi.org/10.15252/emmm.202114759 |
[29] | Matsuda, I., Shoji, H., Yamasaki, N., Miyakawa, T. and Aiba, A. (2016) Comprehensive Behavioral Phenotyping of a New Semaphorin 3 F Mutant Mouse. Molecular Brain, 9, Article No. 15. https://doi.org/10.1186/s13041-016-0196-4 |
[30] | Schwenty-Lara, J., Nehl, D. and Borchers, A. (2019) The Histone Methyltransferase KMT2D, Mutated in Kabuki Syndrome Patients, Is Required for Neural Crest Cell Formation and Migration. Human Molecular Genetics, 29, 305-319. https://doi.org/10.1093/hmg/ddz284 |