全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中药在骨质疏松症治疗中的研究进展
Research Progress of Traditional Chinese Medicine in the Treatment of Osteoporosis

DOI: 10.12677/acm.2025.151015, PP. 90-97

Keywords: 骨质疏松症,中药治疗,药理作用,综述
Osteoporosis
, Traditional Chinese Medicine Treatment, Pharmacological Action, Review

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨质疏松症是一种骨骼疾病,目前临床上治疗该病的西药可能产生药物副作用,长期使用可能存在某些弊端。近年来,一些经典的骨特异性的天然中药被广泛关注,它们似乎具有促进成骨细胞活性和抑制破骨细胞的作用,能够在细胞水平改善骨代谢,而且副作用较少,具有独特优势。因此,本文从中药治疗的角度出发,综述了目前治疗该病的常见天然中药及其作用机理,同时对其临床应用前景进行探索,以期为抗骨质疏松症治疗提供新策略。
Osteoporosis is a bone disease. The current western medicine for the treatment of the disease may have side effects, and long-term use may have some disadvantages. In recent years, some classical bone-specific natural traditional Chinese medicines have been widely focused. They seem to have the effect of promoting osteoblast activity and inhibiting osteoclasts, and can improve bone metabolism at the cellular level with few side effects, which has unique advantages. Therefore, from the perspective of traditional Chinese medicine treatment, this article reviews the common natural Chinese herbs for the treatment of osteoporosis and their mechanism of action, and explores their clinical application prospects, in order to provide new strategies for the treatment of osteoporosis.

References

[1]  王永炫, 李梅, 章振林, 等. 《原发性骨质疏松症诊疗指南(2022)》要点解读[J]. 协和医学杂志, 2023, 14(6): 1203-1207.
[2]  Lin, J., Zhu, J., Wang, Y., Zhang, N., Gober, H., Qiu, X., et al. (2017) Chinese Single Herbs and Active Ingredients for Postmenopausal Osteoporosis: From Preclinical Evidence to Action Mechanism. BioScience Trends, 11, 496-506.
https://doi.org/10.5582/bst.2017.01216
[3]  Zhuo, Y., Li, M., Jiang, Q., Ke, H., Liang, Q., Zeng, L., et al. (2022) Evolving Roles of Natural Terpenoids from Traditional Chinese Medicine in the Treatment of Osteoporosis. Frontiers in Endocrinology, 13, Article 901545.
https://doi.org/10.3389/fendo.2022.901545
[4]  Yang, N., Zhang, X., Li, L., Xu, T., Li, M., Zhao, Q., et al. (2022) Ginsenoside RC Promotes Bone Formation in Ovariectomy-Induced Osteoporosis in Vivo and Osteogenic Differentiation in Vitro. International Journal of Molecular Sciences, 23, Article 6187.
https://doi.org/10.3390/ijms23116187
[5]  Chen, W., Jin, X., Wang, T., Bai, R., Shi, J., Jiang, Y., et al. (2022) Ginsenoside Rg1 Interferes with the Progression of Diabetic Osteoporosis by Promoting Type H Angiogenesis Modulating Vasculogenic and Osteogenic Coupling. Frontiers in Pharmacology, 13, Article 1010937.
https://doi.org/10.3389/fphar.2022.1010937
[6]  Liu, Q., Zhou, J., Yang, Z., Xie, C., Huang, Y., Ling, L., et al. (2021) The Ginsenoside Exhibits Antiosteoporosis Effects in Ketogenic-Diet-Induced Osteoporosis via Rebalancing Bone Turnover. Frontiers in Pharmacology, 11, Article 593820.
https://doi.org/10.3389/fphar.2020.593820
[7]  Lee, S., Park, S., Kim, J.H., Kim, N. and Lee, J. (2023) Ginsenoside Rg2 Inhibits Osteoclastogenesis by Downregulating the NFATC1, C-Fos, and MAPK Pathways. BMB Reports, 56, 551-556.
https://doi.org/10.5483/bmbrep.2023-0100
[8]  Zhang, X., Huang, F., Chen, X., Wu, X. and Zhu, J. (2020) Ginsenoside Rg3 Attenuates Ovariectomy-Induced Osteoporosis via AMPK/mTOR Signaling Pathway. Drug Development Research, 81, 875-884.
https://doi.org/10.1002/ddr.21705
[9]  Zhang, D., Du, J., Yu, M. and Suo, L. (2022) Ginsenoside RB1 Prevents Osteoporosis via the AHR/PRELP/NF-κB Signaling Axis. Phytomedicine, 104, Article 154205.
https://doi.org/10.1016/j.phymed.2022.154205
[10]  Ding, L., Gao, Z., Wu, S., Chen, C., Liu, Y., Wang, M., et al. (2023) Ginsenoside Compound-K Attenuates OVX-Induced Osteoporosis via the Suppression of Rankl-Induced Osteoclastogenesis and Oxidative Stress. Natural Products and Bioprospecting, 13, Article No. 49.
https://doi.org/10.1007/s13659-023-00405-z
[11]  Jiang, Z., Deng, L., Li, M., Alonge, E., Wang, Y. and Wang, Y. (2024) Ginsenoside Rg1 Modulates PI3K/AKT Pathway for Enhanced Osteogenesis via GPER. Phytomedicine, 124, Article 155284.
https://doi.org/10.1016/j.phymed.2023.155284
[12]  Song, M., Jia, F., Cao, Z., Zhang, H., Liu, M. and Gao, L. (2020) Ginsenoside Rg3 Attenuates Aluminum-Induced Osteoporosis through Regulation of Oxidative Stress and Bone Metabolism in Rats. Biological Trace Element Research, 198, 557-566.
https://doi.org/10.1007/s12011-020-02089-9
[13]  Zhang, X., Chen, K., Wei, B., Liu, X., Lei, Z. and Bai, X. (2016) Ginsenosides Rg3 Attenuates Glucocorticoid-Induced Osteoporosis through Regulating BMP-2/BMPR1A/Runx2 Signaling Pathway. Chemico-Biological Interactions, 256, 188-197.
https://doi.org/10.1016/j.cbi.2016.07.003
[14]  He, J., Li, X., Wang, Z., Bennett, S., Chen, K., Xiao, Z., et al. (2019) Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Frontiers in Pharmacology, 10, Article 1344.
https://doi.org/10.3389/fphar.2019.01344
[15]  Guo, Y., Li, Y., Xue, L., Severino, R.P., Gao, S., Niu, J., et al. (2014) Salvia Miltiorrhiza: An Ancient Chinese Herbal Medicine as a Source for Anti-Osteoporotic Drugs. Journal of Ethnopharmacology, 155, 1401-1416.
https://doi.org/10.1016/j.jep.2014.07.058
[16]  Yang, W., Han, J., Gong, S., Zhao, J., Yu, T. and Ma, J. (2022) Cryptotanshinone Suppressed Postmenopausal Osteoporosis by Preventing Rankl-Mediated Osteoclastogenesis against Kidney Injury. Evidence-Based Complementary and Alternative Medicine, 2022, 1-8.
https://doi.org/10.1155/2022/2821984
[17]  Ekeuku, S.O., Pang, K. and Chin, K. (2021) The Skeletal Effects of Tanshinones: A Review. Molecules, 26, Article 2319.
https://doi.org/10.3390/molecules26082319
[18]  Wang, S., Yuan, Y., Lin, Q., Zhou, H., Tang, B., Liu, Y., et al. (2022) Antiosteoporosis Effect of Tanshinol in Osteoporosis Animal Models: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 937538.
https://doi.org/10.3389/fphar.2022.937538
[19]  Rong, K., Chen, P., Lang, Y., Zhang, Y., Wang, Z., Wen, F., et al. (2022) Morinda Officinalis Polysaccharide Attenuates Osteoporosis in Rats Underwent Bilateral Ovariectomy by Suppressing the PGC-1α/PPARγ Pathway. Journal of Orthopaedic Surgery, 30, Article 10225536221130824.
https://doi.org/10.1177/10225536221130824
[20]  Liu, M., Wang, C., Zhang, H., Guo, H., Kang, L., Li, H., et al. (2024) A Systematic Review on Polysaccharides from Morinda Officinalis How: Advances in the Preparation, Structural Characterization and Pharmacological Activities. Journal of Ethnopharmacology, 328, Article 118090.
https://doi.org/10.1016/j.jep.2024.118090
[21]  Huang, S., Cao, Q., Cao, Y., Yang, Y., Xu, T., Yue, K., et al. (2021) Morinda Officinalis Polysaccharides Improve Meat Quality by Reducing Oxidative Damage in Chickens Suffering from Tibial Dyschondroplasia. Food Chemistry, 344, Article 128688.
https://doi.org/10.1016/j.foodchem.2020.128688
[22]  Zhang, D., Fan, L., Yang, N., Li, Z., Sun, Z., Jiang, S., et al. (2022) Discovering the Main “Reinforce Kidney to Strengthening Yang” Active Components of Salt Morinda Officinalis Based on the Spectrum-Effect Relationship Combined with Chemometric Methods. Journal of Pharmaceutical and Biomedical Analysis, 207, Article 114422.
https://doi.org/10.1016/j.jpba.2021.114422
[23]  Wu, P., Chen, W., Huang, H., Tang, W. and Liang, J. (2022) Morinda Officinalis Polysaccharide Regulates Rat Bone Mesenchymal Stem Cell Osteogenic-Adipogenic Differentiation in Osteoporosis by Upregulating miR-21 and Activating the PI3K/AKT Pathway. The Kaohsiung Journal of Medical Sciences, 38, 675-685.
https://doi.org/10.1002/kjm2.12544
[24]  Wu, Y., Chen, D. and Li, L. (2024) Morinda Officinalis Polysaccharide Promotes the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Microrna-210-3p/scavenger Receptor Class a Member 3. Journal of Investigative Medicine, 72, 370-382.
https://doi.org/10.1177/10815589241229693
[25]  Zhang, D., Zhang, S., Jiang, K., Li, T. and Yan, C. (2020) Bioassay-Guided Isolation and Evaluation of Anti-Osteoporotic Polysaccharides from Morinda Officinalis. Journal of Ethnopharmacology, 261, Article 113113.
https://doi.org/10.1016/j.jep.2020.113113
[26]  Jiang, K., Huang, D., Zhang, D., Wang, X., Cao, H., Zhang, Q., et al. (2018) Investigation of Inulins from the Roots of Morinda Officinalis for Potential Therapeutic Application as Anti-Osteoporosis Agent. International Journal of Biological Macromolecules, 120, 170-179.
https://doi.org/10.1016/j.ijbiomac.2018.08.082
[27]  Yan, C., Huang, D., Shen, X., Qin, N., Jiang, K., Zhang, D., et al. (2019) Identification and Characterization of a Polysaccharide from the Roots of Morinda Officinalis, as an Inducer of Bone Formation by Up-Regulation of Target Gene Expression. International Journal of Biological Macromolecules, 133, 446-456.
https://doi.org/10.1016/j.ijbiomac.2019.04.084
[28]  Fang, X.H., Zhou, G.E. and Lin, N. (2023) Total Flavonoids from Rhizoma Drynariae (Gusuibu) Alleviates Diabetic Osteoporosis by Activating BMP2/Smad Signaling Pathway. Combinatorial Chemistry & High Throughput Screening, 26, 2401-2409.
https://doi.org/10.2174/1386207326666230223165730
[29]  谌顺清, 梁伟, 张雪妹, 等. 骨碎补化学成分和药理作用研究进展[J]. 中国中药杂志, 2021, 46(11): 2737-2745.
[30]  陈玄, 陈娟, 谢丽华, 等. 骨碎补-续断药对对成骨/破骨代谢的双向调控作用及其对Hif1ɑ基因的影响[J]. 中国骨质疏松杂志, 2023, 29(1): 64-69.
[31]  上官文姬, 张跃辉, 岳江, 等. 柚皮苷通过HIF-1α/VEGF信号促进H型血管抗骨质疏松的研究[J]. 中国骨质疏松杂志, 2022, 28(12): 1755-1759.
[32]  Ge, X. and Zhou, G. (2021) Protective Effects of Naringin on Glucocorticoid-Induced Osteoporosis through Regulating the PI3K/AKT/mTOR Signaling Pathway. American Journal of Translational Research, 13, 6330-6341.
[33]  Hu, Y., Mu, P., Ma, X., Shi, J., Zhong, Z. and Huang, L. (2021) Rhizoma Drynariae Total Flavonoids Combined with Calcium Carbonate Ameliorates Bone Loss in Experimentally Induced Osteoporosis in Rats via the Regulation of Wnt3a/β-Catenin Pathway. Journal of Orthopaedic Surgery and Research, 16, Article No. 702.
https://doi.org/10.1186/s13018-021-02842-3
[34]  Sun, W., Li, M., Zhang, Y., Huang, Y., Zhan, Q., Ren, Y., et al. (2021) Total Flavonoids of Rhizoma Drynariae Ameliorates Bone Formation and Mineralization in Bmp-Smad Signaling Pathway Induced Large Tibial Defect Rats. Biomedicine & Pharmacotherapy, 138, 111480.
https://doi.org/10.1016/j.biopha.2021.111480
[35]  Shen, Z., Dong, W., Chen, Z., Chen, G., Zhang, Y., Li, Z., et al. (2022) Total Flavonoids of Rhizoma Drynariae Enhances Cd31hiemcnhi Vessel Formation and Subsequent Bone Regeneration in Rat Models of Distraction Osteogenesis by Activating PDGF‑BB/VEGF/RUNX2/OSX Signaling Axis. International Journal of Molecular Medicine, 50, Article No. 112.
https://doi.org/10.3892/ijmm.2022.5167
[36]  Lv, W., Yu, M., Kong, P. and Yan, B. (2021) Total Flavonoids of rhizoma Drynariae Ameliorate Steroid‑induced Avascular Necrosis of the Femoral Head via the PI3K/AKT Pathway. Molecular Medicine Reports, 23, Article No. 345.
https://doi.org/10.3892/mmr.2021.11984
[37]  Wei, X., Xu, A., Shen, H. and Xie, Y. (2017) Qianggu Capsule for the Treatment of Primary Osteoporosis: Evidence from a Chinese Patent Medicine. BMC Complementary and Alternative Medicine, 17, Article No. 108.
https://doi.org/10.1186/s12906-017-1617-3
[38]  Zhang, Y., Jiang, J., Shen, H., Chai, Y., Wei, X. and Xie, Y. (2017) Total Flavonoids from Rhizoma Drynariae (Gusuibu) for Treating Osteoporotic Fractures: Implication in Clinical Practice. Drug Design, Development and Therapy, 11, 1881-1890.
https://doi.org/10.2147/dddt.s139804
[39]  Mu, P., Hu, Y., Ma, X., Shi, J., Zhong, Z. and Huang, L. (2021) Total Flavonoids of Rhizoma Drynariae Combined with Calcium Attenuate Osteoporosis by Reducing Reactive Oxygen Species Generation. Experimental and Therapeutic Medicine, 21, Article No. 618.
https://doi.org/10.3892/etm.2021.10050
[40]  Dietz, B.M., Hajirahimkhan, A., Dunlap, T.L. and Bolton, J.L. (2016) Botanicals and Their Bioactive Phytochemicals for Women’s Health. Pharmacological Reviews, 68, 1026-1073.
https://doi.org/10.1124/pr.115.010843
[41]  Ma, H., He, X., Yang, Y., Li, M., Hao, D. and Jia, Z. (2011) The Genus Epimedium: An Ethnopharmacological and Phytochemical Review. Journal of Ethnopharmacology, 134, 519-541.
https://doi.org/10.1016/j.jep.2011.01.001
[42]  Gao, L. and Zhang, S. (2022) Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals, 15, Article 397.
https://doi.org/10.3390/ph15040397
[43]  李莉, 王嘉瑞, 王晶, 等. 淫羊藿的主要化学成分、药理作用研究进展及质量标志物的预测分析[J]. 中华中医药学刊, 2023, 41(11): 143-151.
[44]  Zheng, H., He, B., Wu, T., Cai, J. and Wei, J. (2020) Extraction, Purification and Anti-Osteoporotic Activity of a Polysaccharide from Epimedium Brevicornum Maxim. in Vitro. International Journal of Biological Macromolecules, 156, 1135-1145.
https://doi.org/10.1016/j.ijbiomac.2019.11.145
[45]  Wang, L., Li, Y., Guo, Y., Ma, R., Fu, M., Niu, J., et al. (2015) Herba Epimedii: An Ancient Chinese Herbal Medicine in the Prevention and Treatment of Osteoporosis. Current Pharmaceutical Design, 22, 328-349.
https://doi.org/10.2174/1381612822666151112145907
[46]  Shi, S., Wang, F., Huang, Y., Chen, B., Pei, C., Huang, D., et al. (2022) Epimedium for Osteoporosis Based on Western and Eastern Medicine: An Updated Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 782096.
https://doi.org/10.3389/fphar.2022.782096

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133