全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

白花鬼针草DN19630等19个糖基转移酶基因的组织特异性表达分析
Tissue Specific Expression Analysis of 19 Glycosyltransferase Genes Including DN19630 in Bidens pilosa var. Radiata

DOI: 10.12677/hjbm.2025.151005, PP. 38-47

Keywords: 白花鬼针草,糖基转移酶基因,qRT-PCR,组织特异性,表达分析
Bidens pilosa var. Radiata
, Glycosyltransferase Gene, qRT-PCR, Tissue Specific, Expression Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过分析白花鬼针草不同组织中候选糖基转移酶基因的表达规律,初步筛选可能参与聚多炔糖苷生物合成途径的糖基转移酶,为白花鬼针草的糖基转移酶基因的研究提供数据支持。方法:本研究利用白花鬼针草转录组数据库中的DN19630等19个候选糖基转移酶基因的DNA序列,设计特异性引物。通过qRT-PCR技术检测候选糖基转移酶基因在白花鬼针草叶、茎、果、花、根中相对表达量。结果:通过对DN19630等19个候选糖基转移酶基因PCR产物扩增情况、扩增曲线图、熔解曲线图及相对表达量进行综合分析,发现DN19630、DN18211、DN12914、DN6852、DN5000g2、DN38310、DN14409g1、DN5293、DN34556、DN14409g2、DN15831这11个候选糖基转移酶基因在叶中表达量相对较高,在根中表达量最低;而DN3608在茎中表达量最高,根中表达量较低;DN21732、DN14031在花中表达量较高,在根中表达量最低。结论:DN19630等14个糖基转移酶可能参与聚多炔糖苷类化合物的生物合成。
Objective: By analyzing the expression patterns of candidate glycosyltransferase genes in different tissues of Bidens pilosa var. radiata, we initially screened the glycosyltransferases that may be involved in the biosynthetic pathway of polyacetylene glycosides, providing data support for the study of glycosyltransferase genes in B. pilosa var. radiata. Methods: This study used the DNA sequences of 19 candidate glycosyltransferase genes such as DN19630 from the transcriptome database of B. pilosa var. radiata to design specific primers. The relative expression levels of the selected glycosyltransferase genes in the leaves, stems, fruits, flowers, and roots of B. pilosa var. radiata were determined through qRT-PCR technology. Results: Through comprehensive analysis of the PCR product amplification status, amplification curves, melting curves, and relative expression levels of 19 candidate glycosyltransferase genes including DN19630, it was found that the expression levels of 11 candidate glycosyltransferase genes, namely DN19630, DN18211, DN12914, DN6852, DN5000g2, DN38310, DN14409g1, DN5293, DN34556, DN14409g2, and DN15831, were relatively high in leaves and lowest in roots. In contrast, DN3608 exhibited the highest expression level in stems and a lower expression level in roots. Additionally, DN21732 and DN14031 showed higher expression levels in flowers and the lowest expression levels in roots. Conclusion: A total of 14 glycosyltransferases, including DN19630, are potentially involved in the biosynthesis of polyene glycosides.

References

[1]  陈雨婷, 马良, 陆堂艳, 等. 国内鬼针草属杂草类群的鉴别[J]. 常熟理工学院学报, 2021, 35(2): 87-91.
[2]  Hao, J., Bhattacharya, S., Ma, L. and Wang, L. (2018) Breeding Systems and Seed Production for Six Weedy Taxa of Bidens. Weed Biology and Management, 18, 41-49.
https://doi.org/10.1111/wbm.12142
[3]  王碧晴, 赵俊男, 张颖, 等. 鬼针草的药理作用研究进展[J]. 中医药导报, 2019, 25(18): 100-103.
[4]  万仲贤, 吴建国, 吴飞, 郑良栋, 覃鸿恩, 吴锦忠. 白花鬼针草化学成分研究[J]. 世界中医药, 2020, 15(10): 1391-1394.
[5]  Chang, S., Chang, C.L., Chiang, Y., Hsieh, R., Tzeng, C., Wu, T., et al. (2004) Polyacetylenic Compounds and Butanol Fraction from Bidens pilosa Can Modulate the Differentiation of Helper T Cells and Prevent Autoimmune Diabetes in Non-Obese Diabetic Mice. Planta Medica, 70, 1045-1051.
https://doi.org/10.1055/s-2004-832645
[6]  Ubillas, R., Mendez, C., Jolad, S., Luo, J., King, S., Carlson, T., et al. (2009) Antihyperglycemic Acetylenic Glucosides from Bidens pilosa. Planta Medica, 66, 82-83.
https://doi.org/10.1055/s-0029-1243117
[7]  Chiang, Y., Chang, C.L., Chang, S., Yang, W. and Shyur, L. (2007) Cytopiloyne, a Novel Polyacetylenic Glucoside from Bidens pilosa, Functions as a T Helper Cell Modulator. Journal of Ethnopharmacology, 110, 532-538.
https://doi.org/10.1016/j.jep.2006.10.007
[8]  Chang, C.L., Liu, H., Kuo, T., Hsu, Y., Shen, M., Pan, C., et al. (2013) Antidiabetic Effect and Mode of Action of Cytopiloyne. Evidence-Based Complementary and Alternative Medicine, 2013, Article 685642.
https://doi.org/10.1155/2013/685642
[9]  Chung, C., Yang, W., Liang, C., Liu, H., Lai, S. and Chang, C.L. (2016) Cytopiloyne, a Polyacetylenic Glucoside from Bidens pilosa, Acts as a Novel Anticandidal Agent via Regulation of Macrophages. Journal of Ethnopharmacology, 184, 72-80.
https://doi.org/10.1016/j.jep.2016.02.036
[10]  Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D., et al. (2013) High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin. Nature, 496, 528-532.
https://doi.org/10.1038/nature12051
[11]  Yan, X., Fan, Y., Wei, W., Wang, P., Liu, Q., Wei, Y., et al. (2014) Production of Bioactive Ginsenoside Compound K in Metabolically Engineered Yeast. Cell Research, 24, 770-773.
https://doi.org/10.1038/cr.2014.28
[12]  Ajikumar, P.K., Xiao, W., Tyo, K.E.J., Wang, Y., Simeon, F., Leonard, E., et al. (2010) Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Science, 330, 70-74.
https://doi.org/10.1126/science.1191652
[13]  Liu, X., Cheng, J., Zhang, G., Ding, W., Duan, L., Yang, J., et al. (2018) Engineering Yeast for the Production of Breviscapine by Genomic Analysis and Synthetic Biology Approaches. Nature Communications, 9, Article No. 448.
https://doi.org/10.1038/s41467-018-02883-z
[14]  Li, M., Kildegaard, K.R., Chen, Y., Rodriguez, A., Borodina, I. and Nielsen, J. (2015) De Novo Production of Resveratrol from Glucose or Ethanol by Engineered Saccharomyces Cerevisiae. Metabolic Engineering, 32, 1-11.
https://doi.org/10.1016/j.ymben.2015.08.007
[15]  黄佳俊, 林俊芳, 孙萍, 等. 多基因整合型载体转化酿酒酵母生物合成白藜芦醇[J]. 中国食品学报, 2018, 18(9): 96-101.
[16]  Wu, S., Wilson, A.E., Chang, L. and Tian, L. (2019) Exploring the Phytochemical Landscape of the Early-Diverging Flowering Plant Amborella trichopoda Baill. Molecules, 24, Article 3814.
https://doi.org/10.3390/molecules24213814
[17]  Brazier‐Hicks, M., Gershater, M., Dixon, D. and Edwards, R. (2017) Substrate Specificity and Safener Inducibility of the Plant UDP‐Glucose‐Dependent Family 1 Glycosyltransferase Super‐Family. Plant Biotechnology Journal, 16, 337-348.
https://doi.org/10.1111/pbi.12775

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133