|
镍基电极材料在超级电容器中的研究进展
|
Abstract:
能源和环境问题引发能源储存技术的发展,而超级电容器因功率密度大、充放电速度快和循环稳定性好成为了一种新型储能装置,但是其较低的能量密度限制了它的广泛应用。镍基材料因具有高理论容量而被广泛研究,但稳定性差、工作电压窗口低限制了该类材料的能量密度和功率密度。根据化学成分将镍基材料分为五类,以及近年来镍基材料的研究进展,探讨这些材料的结构与其电化学性能的关系,以及镍基材料在超级电容器应用中所面临的挑战和机遇。
Energy and environmental issues have led to the development of energy storage technology, and supercapacitors have become a new type of energy storage device due to their high power density, fast charge and discharge speed, and good cycle stability, but their low energy density limits their widespread application. Nickel-based materials have been widely studied due to their high theoretical capacity, but their poor stability and low operating voltage window limit the energy density and power density of this type of material. Nickel-based materials are divided into five categories according to their chemical composition. Based on the research progress of nickel-based materials in recent years, this paper explores the relationship between the structure of these materials and their electrochemical properties, as well as the challenges and opportunities faced by nickel-based materials in supercapacitor applications.
[1] | Wang, G., Lu, Z., Li, Y., Li, L., Ji, H., Feteira, A., et al. (2021) Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chemical Reviews, 121, 6124-6172. https://doi.org/10.1021/acs.chemrev.0c01264 |
[2] | Sun, J., Luo, B. and Li, H. (2022) A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future. Advanced Energy and Sustainability Research, 3, Article 2100191. https://doi.org/10.1002/aesr.202100191 |
[3] | Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S. (2008) Graphene-Based Ultracapacitors. Nano Letters, 8, 3498-3502. https://doi.org/10.1021/nl802558y |
[4] | Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., et al. (2015) Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science, 347, Article 1246501. https://doi.org/10.1126/science.1246501 |
[5] | Sharma, P. and Bhatti, T.S. (2010) A Review on Electrochemical Double-Layer Capacitors. Energy Conversion and Management, 51, 2901-2912. https://doi.org/10.1016/j.enconman.2010.06.031 |
[6] | Feng, L., Zhu, Y., Ding, H. and Ni, C. (2014) Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes. Journal of Power Sources, 267, 430-444. https://doi.org/10.1016/j.jpowsour.2014.05.092 |
[7] | Hepel, M. (2022) Advances in Micro‐Supercapacitors (MSCs) with High Energy Density and Fast Charge‐Discharge Capabilities for Flexible Bioelectronic Devices—A Review. Electrochemical Science Advances, 3, e2100222. https://doi.org/10.1002/elsa.202100222 |
[8] | Naeem, S., Patil, A.V., Shaikh, A.V., Shinde, U.P., Husain, D., Alam, M.T., et al. (2023) A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, Article 1133559. https://doi.org/10.1155/2023/1133559 |
[9] | Lang, J., Kong, L., Wu, W., Liu, M., Luo, Y. and Kang, L. (2008) A Facile Approach to the Preparation of Loose-Packed Ni(OH)2 Nanoflake Materials for Electrochemical Capacitors. Journal of Solid State Electrochemistry, 13, 333-340. https://doi.org/10.1007/s10008-008-0560-0 |
[10] | 李静, 王文成, 王洁雯, 等. 三维石墨烯/氢氧化镍纳米复合材料的制备及电容性能研究[J]. 海南师范大学学报: 自然科学版, 2016, 29(1): 44-49. |
[11] | 黄振楠, 寇生中, 金东东, 等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料, 2015, 46(5): 5084-5088. |
[12] | 蔡敏. 超级电容器复合电极材料Ni(OH)2/GO的制备及其电化学性能研究[J]. 化工技术与开发, 2015, 44(7): 31-32. |
[13] | 任晓霞, 高君华, 郑瑞伦. 氢氧化镍超级电容器电极材料电流变化规律研究[J]. 人工晶体学报, 2016, 45(8): 2141-2146. |
[14] | 韩丹丹, 陈野, 张密林, 等. 纳米NiO的制备及其性能研究[J]. 电池, 2006, 36(4): 283-285. |
[15] | Du, F. (2013) Hierarchically Structured Carbon Nanotubes for Energy Conversion and Storage. University of Dayton. |
[16] | Pognon, G., Brousse, T. and Bélanger, D. (2011) Effect of Molecular Grafting on the Pore Size Distribution and the Double Layer Capacitance of Activated Carbon for Electrochemical Double Layer Capacitors. Carbon, 49, 1340-1348. https://doi.org/10.1016/j.carbon.2010.11.055 |
[17] | Tseng, R. (2006) Mesopore Control of High Surface Area Naoh-Activated Carbon. Journal of Colloid and Interface Science, 303, 494-502. https://doi.org/10.1016/j.jcis.2006.08.024 |
[18] | Ding, S., Zhu, T., Chen, J.S., Wang, Z., Yuan, C. and (David) Lou, X.W. (2011) Controlled Synthesis of Hierarchical NiO Nanosheet Hollow Spheres with Enhanced Supercapacitive Performance. Journal of Materials Chemistry, 21, 6602-6606. https://doi.org/10.1039/c1jm00017a |
[19] | Gopi, C.V.V.M., Reddy, A.E., Bak, J., Cho, I. and Kim, H. (2018) One-Pot Hydrothermal Synthesis of Tungsten Diselenide/Reduced Graphene Oxide Composite as Advanced Electrode Materials for Supercapacitors. Materials Letters, 223, 57-60. https://doi.org/10.1016/j.matlet.2018.04.023 |
[20] | Zang, X., Sun, C., Dai, Z., Yang, J. and Dong, X. (2017) Nickel Hydroxide Nanosheets Supported on Reduced Graphene Oxide for High-Performance Supercapacitors. Journal of Alloys and Compounds, 691, 144-150. https://doi.org/10.1016/j.jallcom.2016.08.233 |
[21] | Cao, Y., Jiao, Q., Zhao, Y., et al. (2010) Synthesis of Nitrogen-Doped Carbon Nanotubes with Layered Double Hydroxides Containing Iron, Cobalt or Nickel as Catalyst Precursors. South African Journal of Chemistry, 63, 58-61. |
[22] | 张宏丽, 陈丽佳. 我国新能源产业及核心技术发展探析[J]. 能源研究与信息, 2013, 29(4): 187-191. |
[23] | 赵秀霞. 新能源汽车的发展现状与对策[J]. 能源研究与信息, 2014, 30(1): 12-17. |
[24] | Fathi, M., Saghafi, M., Mahboubi, F. and Mohajerzadeh, S. (2014) Synthesis and Electrochemical Investigation of Polyaniline/Unzipped Carbon Nanotube Composites as Electrode Material in Supercapacitors. Synthetic Metals, 198, 345-356. https://doi.org/10.1016/j.synthmet.2014.10.033 |
[25] | Ye, T., Kuang, Y., Xie, C., Huang, Z., Zhang, C., Shan, D., et al. (2013) Enhanced Performance by Polyaniline/Tailored Carbon Nanotubes Composite as Supercapacitor Electrode Material. Journal of Applied Polymer Science, 131, Article 39971. https://doi.org/10.1002/app.39971 |
[26] | 刘姝睿, 王隆肇, 冯苗. 分层纳米结构的钴酸镍/四氧化三钴复合电极的制备及其电化学性能研究[J]. 中国陶瓷, 2017, 53(10): 19-25. |
[27] | Ruan, J., Huo, Y. and Hu, B. (2016) Three-Dimensional Ni(OH)2/Cu2O/CuO Porous Cluster Grown on Nickel Foam for High Performance Supercapacitor. Electrochimica Acta, 215, 108-113. https://doi.org/10.1016/j.electacta.2016.08.064 |
[28] | Bai, C., Sun, S., Xu, Y., Yu, R. and Li, H. (2016) Facile One-Step Synthesis of Nanocomposite Based on Carbon Nanotubes and Nickel-Aluminum Layered Double Hydroxides with High Cycling Stability for Supercapacitors. Journal of Colloid and Interface Science, 480, 57-62. https://doi.org/10.1016/j.jcis.2016.07.001 |
[29] | Li, M., Liu, F., Cheng, J.P., Ying, J. and Zhang, X.B. (2015) Enhanced Performance of Nickel-Aluminum Layered Double Hydroxide Nanosheets/Carbon Nanotubes Composite for Supercapacitor and Asymmetric Capacitor. Journal of Alloys and Compounds, 635, 225-232. https://doi.org/10.1016/j.jallcom.2015.02.130 |