|
基于改进YOLOv5算法的钻爆法隧道炮孔孔位智能识别
|
Abstract:
隧道工程一直是交通基础设施建设的重要组成部分。在隧道钻爆法施工中,装药环节对工程质量和施工效率起着关键作用。然而,传统的装药环节通常依赖于人工,存在效率低、危险性强的问题。本研究采用YOLOv5深度学习算法,更换骨干网络结构为ShuffleNet V2,降低模型复杂程度;增加坐标注意力机制,提升检测准确性。通过自主收集和标记图像建立炮孔图像数据集。经训练后模型能够高效地检测和定位隧道炮孔,实现了准确性和速度的平衡。研究结果表明,改进的YOLOv5算法模型在满足检测精度的前提下,推理速度提升23%,模型大小降低54%。在隧道施工中具有巨大的潜力,有望在未来的建设中广泛应用。
Tunneling is always an important part of the construction of transport infrastructure. In the construction of tunnel drilling and blasting methods, the loading link plays a crucial role in the project quality and construction efficiency. However, the traditional loading part usually relies on manual labour, which has the problems of low efficiency and danger. In this paper, the YOLOv5 deep learning algorithm is used to replace the backbone network structure with ShuffleNet V2 to reduce the model complexity; the coordinate attention mechanism is added to improve the detection accuracy. The cannon hole image dataset is established by autonomously collecting and labelling images. The trained model is able to detect and locate the tunnel gun holes efficiently, achieving a balance between accuracy and speed. The results show that the improved YOLOv5 algorithm model improves the inference speed by 23% and reduces the model size by 54% while satisfying the detection accuracy. It has great potential in tunnelling and is expected to be widely used in future construction.
[1] | Wang, W., Chi, H., Zhao, S. and Du, Z. (2018) A Control Method for Hydraulic Manipulators in Automatic Emulsion Filling. Automation in Construction, 91, 92-99. https://doi.org/10.1016/j.autcon.2018.03.001 |
[2] | Zhang, J.-Y., Chen, Y. and Huang, X.-X. (2009) Edge Detection of Images Based on Improved Sobel Operator and Genetic Algorithms. 2009 International Conference on Image Analysis and Signal Processing, Linhai, 11-12 April 2009, 31-35. https://doi.org/10.1109/iasp.2009.5054605 |
[3] | Kanopoulos, N., Vasanthavada, N. and Baker, R.L. (1988) Design of an Image Edge Detection Filter Using the Sobel Operator. IEEE Journal of Solid-State Circuits, 23, 358-367. https://doi.org/10.1109/4.996 |
[4] | Koschan, A. (1995) A Comparative Study on Color Edge Detection. Proceedings of the 2nd Asian Conference on Computer Vision, Vol. 3, 574-578. |
[5] | van Vliet, L.J., Young, I.T. and Beckers, G.L. (1988) An Edge Detection Model Based on Non-Linear Laplace Filtering. In: Machine Intelligence and Pattern Recognition, Elsevier, 63-73. https://doi.org/10.1016/b978-0-444-87137-4.50011-4 |
[6] | van Vliet, L.J., Young, I.T. and Beckers, G.L. (1989) A Nonlinear Laplace Operator as Edge Detector in Noisy Images. Computer Vision, Graphics, and Image Processing, 45, 167-195. https://doi.org/10.1016/0734-189x(89)90131-x |
[7] | Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. MIT Press. |
[8] | Kuo, C.-J. (2016) Understanding Convolutional Neural Networks with a Mathematical Model. Journal of Visual Communication and Image Representation, 41, 406-413. https://doi.org/10.1016/j.jvcir.2016.11.003 |
[9] | Alippi, C., Disabato, S. and Roveri, M. (2018) Moving Convolutional Neural Networks to Embedded Systems: The Alexnet and VGG-16 Case. 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, 11-13 April 2018, 212-223. https://doi.org/10.1109/ipsn.2018.00049 |
[10] | He, J., Li, S., Shen, J.M., et al. (2018) Facial Expression Recognition Based on Vggnet Convolutional Neural Network. 2018 Chinese Automation Congress (CAC), Xi’an, 30 November-2 December 2018, 4146-4151. https://doi.org/10.1109/cac.2018.8623238 |
[11] | Ibrahim, Y., Wang, H. and Adam, K. (2020) Analyzing the Reliability of Convolutional Neural Networks on GPUs: GoogLeNet as a Case Study. 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, 9-10 September 2020, 1-6. https://doi.org/10.1109/iccit-144147971.2020.9213804 |
[12] | Oono, K. and Suzuki, T. (2019) Approximation and Non-Parametric Estimation of Resnet-Type Convolutional Neural Networks. International Conference on Machine Learning, PMLR, Long Beach, 9-15 June 2019, 4922-4931. |
[13] | Zhou, S. and Song, W. (2020) Concrete Roadway Crack Segmentation Using Encoder-Decoder Networks with Range Images. Automation in Construction, 120, Article ID: 103403. https://doi.org/10.1016/j.autcon.2020.103403 |
[14] | 方星桦, 阳军生, 黄定著, 等. 基于全景展开图像的隧道围岩节理识别方法研究[J]. 长江科学院院报, 2024, 41(5): 116-123. |
[15] | 柳厚祥, 李汪石, 查焕奕, 等. 基于深度学习技术的公路隧道围岩分级方法[J]. 岩土工程学报, 2018, 40(10): 1809-1817. |
[16] | 谢雄耀, 王皓正, 周彪, 等. 复杂环境公路隧道裂缝快速识别与分割算法研究[J]. 地下空间与工程学报, 2022, 18(3): 1025-1033+1043。 |
[17] | 陈帅豪. 基于深度学习的隧道质量缺陷检测和识别研究[D]: [硕士学位论文]. 郑州: 华北水利水电大学, 2023. |
[18] | 岳中文, 金庆雨, 潘杉, 等. 基于深度学习的轻量化炮孔智能检测方法研究[J]. 煤炭学报, 2024, 49(5): 2247-2256. |
[19] | 张万志. 岩质隧道炮孔图像识别算法及光面爆破参数优化研究[D]: [博士学位论文]. 济南: 山东大学, 2019. |
[20] | 张也. 智能炸药填装机器人炮孔识别与可行区域规划相关技术研究[D]: [硕士学位论文]. 鞍山: 辽宁科技大学, 2020. |
[21] | Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 580-587. https://doi.org/10.1109/cvpr.2014.81 |
[22] | Girshick, R. (2015) Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/iccv.2015.169 |
[23] | Ren, S., He, K., Girshick, R. and Sun, J. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149. https://doi.org/10.1109/tpami.2016.2577031 |
[24] | Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788. https://doi.org/10.1109/cvpr.2016.91 |
[25] | Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525. https://doi.org/10.1109/cvpr.2017.690 |
[26] | Hou, Q., Zhou, D. and Feng, J. (2021) Coordinate Attention for Efficient Mobile Network Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 13713-13722. https://doi.org/10.1109/cvpr46437.2021.01350 |