|
Mine Engineering 2025
人工智能在油气钻井工程中的应用
|
Abstract:
近年来,随着油气资源的勘探和开发进入更深层、更复杂的地质环境,传统钻井方式在效率、安全和成本上面临严峻挑战。为应对这些挑战,人工智能(AI)技术正逐步渗透到油气钻井工程中,提升了钻井作业的智能化水平。本文结合国内外对油气钻井工程的研究现状,讨论了人工智能在油气钻井工程中的关键技术应用,智能钻完井技术结合大数据、人工智能算法和软件平台,优化井眼轨道、导向钻井和钻速等关键技术,以提高作业安全性和效率。其次,智能钻井装备的研发与应用在国际上已相对成熟,智能钻机、钻头和旋转导向系统等设备实现了高度自动化,提高了作业效率并降低了人力成本。最后,钻完井软件系统通过引入机器学习和云计算等技术,整合和分析大量数据,从而优化钻井设计和操作。虽然国内在智能钻井软件和装备方面起步较晚,但已有了一定进展,主要集中在监测优化和设计方面。未来,随着核心技术的突破,人工智能将为油气资源开发带来技术革命。我国需继续加强基础研究,结合行业实际需求,推动技术自主创新与应用推广,以提升整体智能化水平,缩小与国际先进技术的差距。
In recent years, as the exploration and development of oil and gas resources enter deeper and more complex geological environments, traditional drilling methods face severe challenges in efficiency, safety and cost. To meet these challenges, artificial intelligence (AI) technology is gradually penetrating into oil and gas drilling engineering, improving the intelligence level of drilling operations. Based on the current research status of oil and gas drilling engineering at home and abroad, this paper discusses the key technical applications of artificial intelligence in oil and gas drilling engineering. Intelligent drilling and completion technology combines big data, artificial intelligence algorithms and software platforms to optimize key technologies such as wellbore trajectory, directional drilling and drilling speed to improve operation safety and efficiency. Secondly, the research and development and application of intelligent drilling equipment have been relatively mature internationally. Equipment such as intelligent drilling rigs, drill bits and rotary steering systems have achieved a high degree of automation, which has improved operation efficiency and reduced labor costs. Finally, the drilling and completion software system integrates and analyzes a large amount of data by introducing technologies such as machine learning and cloud computing, thereby optimizing drilling design and operation. Although China started late in the field of intelligent drilling software and equipment, it has made some progress, mainly in monitoring optimization and design. In the future, with the breakthrough of core technology, artificial intelligence will bring a technological revolution to the development of oil and gas resources. China needs to continue to strengthen basic research, combine the actual needs of the industry, and promote independent technological innovation and application promotion, so as to improve the overall level of intelligence and narrow
[1] | 刘伟, 付加胜, 郭庆丰, 等. 智能控压钻井关键技术研究进展与展望[J]. 石油钻探技术, 2024, 52(5): 42-50. |
[2] | 谢奎. 智能钻完井技术研究现状及发展趋势[J]. 西部探矿工程, 2024, 36(10): 67-69, 73. |
[3] | 李中. 海洋钻完井智能感知关键技术研究与现场应用[J]. 石油钻探技术, 2024, 52(5): 20-25. |
[4] | 曾义金, 王敏生, 光新军, 等. 中国石化智能钻井技术进展与展望[J]. 石油钻探技术, 2024, 52(5): 1-9. |
[5] | 冯定, 王健刚, 张红, 等. 数字孪生技术在油气钻完井工程中的应用与思考[J]. 石油钻探技术, 2024, 52(5): 26-34. |
[6] | 杜松涛, 杨晓峰, 刘克强. 人工智能技术在钻井工程的应用与发展[J]. 石油化工应用, 2024, 43(6): 1-5, 10. |
[7] | 李华洋, 邓金根, 谭强, 等. 智能钻井技术应用体系构建及研究进展[J]. 现代化工, 2023, 43(10): 41-45+51. |
[8] | 李涛. 智能钻完井技术研究现状及发展趋势[J]. 现代工业经济和信息化, 2023, 13(7): 291-292, 295. |
[9] | 张好林, 杨传书, 李昌盛, 等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术, 2023, 51(3): 58-65. |
[10] | 李根生, 宋先知, 祝兆鹏, 等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术, 2023, 51(4): 35-47. |
[11] | 王敏生, 光新军, 耿黎东. 人工智能在钻井工程中的应用现状与发展建议[J]. 石油钻采工艺, 2021, 43(4): 420-427. |
[12] | 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11. |