全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv8的轮毂检测算法研究
Research on Wheel Hub Detection Algorithm Based on YOLOv8

DOI: 10.12677/jisp.2025.141004, PP. 34-44

Keywords: 轮毂分类,X光轮毂图像,卷积神经网络,YOLOV8算法,Focal Loss函数
Hub Classification
, X-Ray Hub Image, Convolutional Neural Network, Yolov8 Algorithm, Focal Loss Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

鉴于传统轮毂分类检测流程中存在的劳动重复度高、人力成本高企及生产效率低下等挑战,文章提出了一种应用YOLOv8网络的汽车轮毂自动分类系统。该系统的工作流程包括:首先,收集丰富的汽车轮毂X光图像,构建一个囊括多种轮毂类型的综合性数据集;接着,利用YOLOv8算法对该数据集实施训练,以生成一个能够精确分辨轮毂种类的模型。在模型训练阶段,针对轮毂分类的具体特性,对YOLOv8算法进行了改进,引入了Focal Loss作为损失函数,从而有效缓解了正负样本不均衡的问题,进一步提升了轮毂分类的精确度。在实验验证环节,文章在不同噪声干扰和光照条件下对轮毂图像进行了测试。实验结果显示,该系统能迅速且准确地识别出各类轮毂,平均识别准确率高达98.43%,展现出了卓越的分类精度和强大的鲁棒性。
In response to the challenges of high labor repetition, escalating labor costs, and low production efficiency in traditional hub classification and inspection processes, this paper proposes an automatic automobile hub classification system using the YOLOv8 network. The workflow of this system includes: first, collecting extensive X-ray images of automobile hubs to construct a comprehensive dataset encompassing various hub types; next, utilizing the YOLOv8 algorithm to train this dataset to generate a model capable of accurately distinguishing hub types. During the model training phase, improvements were made to the YOLOv8 algorithm based on the specific characteristics of hub classification, with Focal Loss introduced as the loss function, effectively mitigating the issue of imbalance between positive and negative samples and further enhancing the accuracy of hub classification. In the experimental validation stage, hub images were tested under different noise interference and lighting conditions. The experimental results demonstrate that the system can swiftly and accurately identify various types of hubs, with an average recognition accuracy of 98.43%, showcasing excellent classification accuracy and robustness.

References

[1]  芦嘉鑫. 基于深度学习的轮毂自动分类与缺陷检测技术研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2022.
[2]  陈艺文. 基于双目立体视觉的汽车轮毂型号识别系统研究[D]: [硕士学位论文]. 太原: 太原师范学院, 2023.
[3]  田甜. 基于改进的YOLOV3算法的汽车前脸零件配置识别[D]: [硕士学位论文]. 沈阳: 沈阳建筑大学, 2020.
[4]  李姝, 李思远, 刘国庆. 基于YOLOv8无人机航拍图像的小目标检测算法研究[J]. 小型微型计算机系统, 2024, 45(9): 2165-2174.
[5]  张晓欢, 杨佳米, 谢琬仪, 等. 基于物联网 + YOLO-GhostNet-SE的养老院安全预警系统设计与优化[J]. 物联网技术, 2024, 14(9): 28-32.
[6]  刘子洋, 徐慧英, 朱信忠, 等. Bi-YOLO: 一种基于YOLOv8n改进的轻量化目标检测算法[J]. 计算机工程与科学, 2024, 46(8): 1444-1454.
[7]  张晓欢, 杨佳米, 谢琬仪, 等. 基于物联网 + YOLO-GhostNet-SE的养老院安全预警系统设计与优化[J]. 物联网技术, 2024, 14(9): 28-32.
[8]  李佳泽, 李华, 周萍等. 基于RPN的安全保密风险量化模型构建[J]. 核标准计量与质量, 2023(4): 54-58.
[9]  薛浩, 马静, 郭小宇. 基于Focal Loss改进LightGBM的供水管网毛刺数据检测[J]. 计算机与现代化, 2024(9): 74-81, 90.
[10]  郝慧君, 叶佳豪, 王周, 等. “SP + BOPPS + S”教学模式在UI前端设计课程的应用研究[J]. 创新创业理论研究与实践, 2024, 7(16): 129-132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133