全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

3D骨肿瘤打印技术的研究进展
Research Progress on 3D Bone Tumor Printing Technology

DOI: 10.12677/mos.2025.141009, PP. 89-97

Keywords: 3D打印技术,骨肿瘤,生物材料,计算机三维重建,修复和重建
3D Printing Technology
, Bone Tumors, Biomaterials, Computer 3D Reconstruction, Repair and Reconstruction

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨肿瘤的手术治疗包括肿瘤切除和功能重建两部分,传统手术方式往往存在各种局限性。近年来,3D打印技术在临床领域广泛应用,其是基于生物材料研究成果、计算机三维重建技术等发展起来的一项新兴技术。对于骨肿瘤领域,3D打印技术可以通过生成模拟,在各个方向和多角度上实现病变区域和供体部位骨结构的结构整合。因此,可以制定个性化和准确的治疗方案,以恢复解剖结构,肌肉附着点和最大功能。本文总结回顾了3D骨肿瘤打印技术在骨肿瘤治疗中的应用情况及研究进展,并分析了现有技术的优缺点,发现3D骨肿瘤打印技术在临床治疗中具有独特的优势,在骨肿瘤个性化和精准化治疗中具有广泛的应用前景。
Surgical treatment of bone tumors includes two parts: tumor resection and functional reconstruction, and traditional surgical methods often have various limitations. In recent years, 3D printing technology has been widely applied in the clinical field, which is an emerging technology based on research achievements in biomaterials and computer 3D reconstruction technology. For the field of bone tumors, 3D printing technology can achieve structural integration of lesion areas and donor site bone structures in various directions and angles through generative simulation. Therefore, personalized and accurate treatment plans can be developed to restore anatomical structure, muscle attachment points, and maximum function. This article summarizes and reviews the application and research progress of 3D bone tumor printing technology in bone tumor treatment, and analyzes the advantages and disadvantages of existing technologies. It is found that 3D bone tumor printing technology has unique advantages in clinical treatment and has broad application prospects in personalized and precise treatment of bone tumors.

References

[1]  Chen, H. and Yao, Y. (2021) Progress of Biomaterials for Bone Tumor Therapy. Journal of Biomaterials Applications, 36, 945-955.
https://doi.org/10.1177/08853282211035236
[2]  Miwa, S., Yamamoto, N. and Tsuchiya, H. (2021) Bone and Soft Tissue Tumors: New Treatment Approaches. Cancers, 13, Article 1832.
https://doi.org/10.3390/cancers13081832
[3]  丹尼尔·赛德尔丁, 黄晓夏, 陈江涛, 等. 3D打印假体重建骨肿瘤术后大段骨缺损[J]. 中国组织工程研究, 2023, 27(29): 4628-4634.
[4]  Sugano, N. (2018) Computer Assisted Orthopaedic Surgery for Hip and Knee. Springer.
[5]  Papagelopoulos, P.J., Megaloikonomos, P.D., Korkolopoulou, P., Vottis, C.T., Kontogeorgakos, V.A. and Savvidou, O.D. (2019) Total Calcaneus Resection and Reconstruction Using a 3-Dimensional Printed Implant. Orthopedics, 42, e282-e287.
https://doi.org/10.3928/01477447-20190125-07
[6]  Berish, R.B., Ali, A.N., Telmer, P.G., Ronald, J.A. and Leong, H.S. (2018) Translational Models of Prostate Cancer Bone Metastasis. Nature Reviews Urology, 15, 403-421.
https://doi.org/10.1038/s41585-018-0020-2
[7]  Datta, P., Dey, M., Ataie, Z., Unutmaz, D. and Ozbolat, I.T. (2020) 3D Bioprinting for Reconstituting the Cancer Microenvironment. npj Precision Oncology, 4, Article No. 18.
https://doi.org/10.1038/s41698-020-0121-2
[8]  Parrish, J., Lim, K., Zhang, B., Radisic, M. and Woodfield, T.B.F. (2019) New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends in Biotechnology, 37, 1327-1343.
https://doi.org/10.1016/j.tibtech.2019.04.009
[9]  Cheng, F., Cao, X., Li, H., Liu, T., Xie, X., Huang, D., et al. (2019) Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing. Nano Letters, 19, 3603-3611.
https://doi.org/10.1021/acs.nanolett.9b00583
[10]  Meng, F., Meyer, C.M., Joung, D., Vallera, D.A., McAlpine, M.C. and Panoskaltsis-Mortari, A. (2019) 3D Bioprinted in Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. Advanced Materials, 31, Article 1806899.
https://doi.org/10.1002/adma.201806899
[11]  Vanderburgh, J., Sterling, J.A. and Guelcher, S.A. (2016) 3D Printing of Tissue Engineered Constructs for in Vitro Modeling of Disease Progression and Drug Screening. Annals of Biomedical Engineering, 45, 164-179.
https://doi.org/10.1007/s10439-016-1640-4
[12]  Holmes, B., Zhu, W. and Zhang, L.G. (2014) Development of a Novel 3D Bioprinted in Vitro Nano Bone Model for Breast Cancer Bone Metastasis Study. MRS Proceedings, 1724, 1-6.
https://doi.org/10.1557/opl.2014.941
[13]  Almela, T., Al-Sahaf, S., Brook, I.M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., et al. (2018) 3D Printed Tissue Engineered Model for Bone Invasion of Oral Cancer. Tissue and Cell, 52, 71-77.
https://doi.org/10.1016/j.tice.2018.03.009
[14]  Park, S., Lee, H., Kim, K., Lee, S., Lee, J., Kim, S., et al. (2018) In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with Β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model. Materials, 11, Article 238.
https://doi.org/10.3390/ma11020238
[15]  Cui, H., Esworthy, T., Zhou, X., Hann, S.Y., Glazer, R.I., Li, R., et al. (2019) Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone. Advanced Healthcare Materials, 9, Article 1900924.
https://doi.org/10.1002/adhm.201900924
[16]  Chen, Y., Shen, Y., Ho, C., Yu, J., Wu, Y.A., Wang, K., et al. (2018) Osteogenic and Angiogenic Potentials of the Cell-Laden Hydrogel/Mussel-Inspired Calcium Silicate Complex Hierarchical Porous Scaffold Fabricated by 3D Bioprinting. Materials Science and Engineering: C, 91, 679-687.
https://doi.org/10.1016/j.msec.2018.06.005
[17]  Theus, A.S., Ning, L., Hwang, B., Gil, C., Chen, S., Wombwell, A., et al. (2020) Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers, 12, Article 2262.
https://doi.org/10.3390/polym12102262
[18]  Mehrotra, S., Moses, J.C., Bandyopadhyay, A. and Mandal, B.B. (2019) 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges. ACS Applied Bio Materials, 2, 1385-1405.
https://doi.org/10.1021/acsabm.9b00073
[19]  Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J. and Jungst, T. (2017) Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability. Biofabrication, 9, Article 044107.
https://doi.org/10.1088/1758-5090/aa8dd8
[20]  Ma, Y., Zhang, B., Sun, H., Liu, D., Zhu, Y., Zhu, Q., et al. (2023) The Dual Effect of 3d-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. International Journal of Nanomedicine, 18, 293-305.
https://doi.org/10.2147/ijn.s390500
[21]  Neufurth, M., Wang, X., Schröder, H.C., Feng, Q., Diehl-Seifert, B., Ziebart, T., et al. (2014) Engineering a Morphogenetically Active Hydrogel for Bioprinting of Bioartificial Tissue Derived from Human Osteoblast-Like Saos-2 Cells. Biomaterials, 35, 8810-8819.
https://doi.org/10.1016/j.biomaterials.2014.07.002
[22]  Ling, K., Huang, G., Liu, J., Zhang, X., Ma, Y., Lu, T., et al. (2015) Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids. Engineering, 1, 269-274.
https://doi.org/10.15302/j-eng-2015062
[23]  Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A., et al. (2013) 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 25, 5011-5028.
https://doi.org/10.1002/adma.201302042
[24]  Gholamalizadeh, A., Nazifkerdar, S., Safdarian, N., Ziaee, A.E., Mobedi, H., Rahbarghazi, R., et al. (2023) Critical Elements in Tissue Engineering of Craniofacial Malformations. Regenerative Medicine, 18, 487-504.
https://doi.org/10.2217/rme-2022-0128
[25]  Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C.M., Unterhinninghofen, R., et al. (2010) 3D Printing Based on Imaging Data: Review of Medical Applications. International Journal of Computer Assisted Radiology and Surgery, 5, 335-341.
https://doi.org/10.1007/s11548-010-0476-x
[26]  孔金海, 钱明, 钟南哲, 等. 3D打印模型辅助骶骨脊索瘤整块切除[J]. 中华骨科杂志, 2017, 37(10): 620-628.
[27]  陈雍君, 钟华, 华强, 等. 3D打印技术辅助上颈椎肿瘤模型的术前规划及手术模拟[J]. 中国组织工程研究, 2018, 22(35): 5614-5619.
[28]  张亚, 孙允龙, 冉君, 等. 基于3DMRI与CT建模的3D打印模型在骶骨肿瘤术前规划中的应用[J]. 生物骨科材料与临床研究, 2021, 18(2): 12-16.
[29]  Esposito Corcione, C., Gervaso, F., Scalera, F., Montagna, F., Sannino, A. and Maffezzoli, A. (2016) The Feasibility of Printing Polylactic Acid-Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer. Journal of Applied Polymer Science, 134, Article 44656.
https://doi.org/10.1002/app.44656
[30]  Budharaju, H., Suresh, S., Sekar, M.P., De Vega, B., Sethuraman, S., Sundaramurthi, D., et al. (2023) Ceramic Materials for 3D Printing of Biomimetic Bone Scaffolds—Current State-of-the-Art & Future Perspectives. Materials & Design, 231, Article 112064.
https://doi.org/10.1016/j.matdes.2023.112064
[31]  Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.A.C., et al. (2007) The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds with Multi-Scale Porosity. Biomaterials, 28, 45-54.
https://doi.org/10.1016/j.biomaterials.2006.08.021
[32]  Reid, J.A., Palmer, X., Mollica, P.A., Northam, N., Sachs, P.C. and Bruno, R.D. (2019) A 3D Bioprinter Platform for Mechanistic Analysis of Tumoroids and Chimeric Mammary Organoids. Scientific Reports, 9, Article No. 7466.
https://doi.org/10.1038/s41598-019-43922-z
[33]  Wang, X., Tolba, E., Schröder, H.C., Neufurth, M., Feng, Q., Diehl-Seifert, B., et al. (2014) Effect of Bioglass on Growth and Biomineralization of Saos-2 Cells in Hydrogel after 3D Cell Bioprinting. PLOS ONE, 9, e112497.
https://doi.org/10.1371/journal.pone.0112497
[34]  Zhou, X., Zhu, W., Nowicki, M., Miao, S., Cui, H., Holmes, B., et al. (2016) 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study. ACS Applied Materials & Interfaces, 8, 30017-30026.
https://doi.org/10.1021/acsami.6b10673
[35]  Wang, Y., Shi, W., Kuss, M., Mirza, S., Qi, D., Krasnoslobodtsev, A., et al. (2018) 3D Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomaterials Science & Engineering, 4, 4401-4411.
https://doi.org/10.1021/acsbiomaterials.8b01277
[36]  Kwakwa, K.A., Vanderburgh, J.P., Guelcher, S.A. and Sterling, J.A. (2017) Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments. Current Osteoporosis Reports, 15, 247-254.
https://doi.org/10.1007/s11914-017-0385-9
[37]  Farokhi, M., Mottaghitalab, F., Samani, S., Shokrgozar, M.A., Kundu, S.C., Reis, R.L., et al. (2018) Silk Fibroin/Hydroxyapatite Composites for Bone Tissue Engineering. Biotechnology Advances, 36, 68-91.
https://doi.org/10.1016/j.biotechadv.2017.10.001
[38]  Dadwal, U., Falank, C., Fairfield, H., Linehan, S., Rosen, C.J., Kaplan, D.L., et al. (2016) Tissue-Engineered 3D Cancer-In-Bone Modeling: Silk and PUR Protocols. Bone Key Reports.
https://doi.org/10.1038/bonekey.2016.75
[39]  Demirtaş, T.T., Irmak, G. and Gümüşderelioğlu, M. (2017) A Bioprintable Form of Chitosan Hydrogel for Bone Tissue Engineering. Biofabrication, 9, Article 035003.
https://doi.org/10.1088/1758-5090/aa7b1d
[40]  Murugan, S.S., Anil, S., Sivakumar, P., Shim, M.S. and Venkatesan, J. (2021) 3d-Printed Chitosan Composites for Biomedical Applications. In: Advances in Polymer Science, Springer, 87-116.
https://doi.org/10.1007/12_2021_101
[41]  Swaminathan, S., Hamid, Q., Sun, W. and Clyne, A.M. (2019) Bioprinting of 3D Breast Epithelial Spheroids for Human Cancer Models. Biofabrication, 11, Article 025003.
https://doi.org/10.1088/1758-5090/aafc49
[42]  Nashchekina, Y.A., Yudintceva, N.M., Nikonov, P.O., Ivanova, E.A., Smagina, L.V. and Voronkina, I.V. (2017). Effect of Concentration of Collagen Gel on Functional Activity of Bone Marrow Mesenchymal Stromal Cells. Bulletin of Experimental Biology and Medicine, 163, 123-128.
https://doi.org/10.1007/s10517-017-3751-9
[43]  Li, Q., Lei, X., Wang, X., Cai, Z., Lyu, P. and Zhang, G. (2019) Hydroxyapatite/Collagen Three-Dimensional Printed Scaffolds and Their Osteogenic Effects on Human Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Engineering Part A, 25, 1261-1271.
https://doi.org/10.1089/ten.tea.2018.0201
[44]  Cidonio, G., Alcala-Orozco, C.R., Lim, K.S., Glinka, M., Mutreja, I., Kim, Y., et al. (2019) Osteogenic and Angiogenic Tissue Formation in High Fidelity Nanocomposite Laponite-Gelatin Bioinks. Biofabrication, 11, Article 035027.
https://doi.org/10.1088/1758-5090/ab19fd
[45]  Morgan, C., Khatri, C., Hanna, S.A., Ashrafian, H. and Sarraf, K.M. (2019) Use of Three-Dimensional Printing in Preoperative Planning in Orthopaedic Trauma Surgery: A Systematic Review and Meta-Analysis. World Journal of Orthopedics, 11, 57-67.
https://doi.org/10.5312/wjo.v11.i1.57
[46]  孙涛, 崔林江, 窦超超. 3D打印技术在骨肿瘤手术术前规划中的初步应用[J]. 中国数字医学, 2016, 11(9): 74-76.
[47]  Youman, S., Dang, E., Jones, M., Duran, D. and Brenseke, B. (2021) The Use of 3D Printers in Medical Education with a Focus on Bone Pathology. Medical Science Educator, 31, 581-588.
https://doi.org/10.1007/s40670-021-01222-0
[48]  谭海涛, 黄文华, 钟世镇, 等. 医学3D打印技术在骨科修复重建的应用[Z]. 贵港市人民医院, 2017.
[49]  Gao, G., Ahn, M., Cho, W., Kim, B. and Cho, D. (2021) 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics, 13, Article 1373.
https://doi.org/10.3390/pharmaceutics13091373
[50]  谭海涛, 陈国平, 张其标. 3D打印技术在骨肿瘤手术应用中的研究进展[J]. 中国癌症防治杂志, 2020, 12(3): 356-360.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133