全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

球上双正则函数的增长性
Growth of Biregular Functions in Balls

DOI: 10.12677/pm.2025.151004, PP. 31-39

Keywords: Taylor级数,双正则函数,增长阶
Taylor Series
, Biregular Functions, Growth Order

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dirac算子零化的Clifford值函数称为正则函数,正则函数是全纯函数在高维空间中非交换领域的推广。双正则函数是双变量的正则函数。正则函数的增长性问题是Clifford分析中的重要问题之一。本文研究单位球上双正则函数的增长性问题。借鉴Wiman-Valiron理论,利用双正则函数的Taylor级数,研究双正则函数的增长阶,得到广义Lindel?f-Pringsheim定理,建立增长阶与Taylor级数的联系。
The Clifford-valued functions of null-solutions of Dirac operator are called regular functions. A regular function is an extension of holomorphic functions in non-commutative domains in high-dimensional spaces. Biregular functions are regular functions of two variables. The growth problem of regular functions is one of the important problems in Clifford analysis. In this paper, we investigate the growth problem of biregular functions in unit balls. Drawing on Wiman-Valiron theory, the growth order of biregular functions is studied by using the Taylor series of biregular functions, and the generalization of Lindel?f-Pringsheim theorem is obtained. This theorem shows the relation between the growth order of biregular functions and the Taylor series.

References

[1]  Brackx, F., Delanghe, R. and Sommen, F. (1982) Clifford Analysis. Pitman, 51-83.
[2]  Wu, S. (1999) Well-Posedness in Sobolev Spaces of the Full Water Wave Problem in 3D. Journal of the American Mathematical Society, 12, 445-495.
https://doi.org/10.1090/s0894-0347-99-00290-8
[3]  Hestenes, D. (1985) Quantum Mechanics from Self-Interaction. Foundations of Physics, 15, 63-87.
https://doi.org/10.1007/bf00738738
[4]  Mandel, H. and Semyonov, M. (2006) A Welfare State Paradox: State Interventions and Women’s Employment Opportunities in 22 Countries. American Journal of Sociology, 111, 1910-1949.
https://doi.org/10.1086/499912
[5]  Brackx, F. and Pincket, W. (1986) The Biregular Functions of Clifford Analysis: Some Special Topics. In: Clifford Algebras and Their Applications in Mathematical Physics, Springer, 159-166.
https://doi.org/10.1007/978-94-009-4728-3_14
[6]  Huang, S. (1996) Nonlinear Boundary Value Problem for Biregular Functions in Clifford Analysis. Science in China (Series A), 39, 1152-1163.
[7]  Huang, S., Qiao, Y. and Wen, G. (2005) Real and Complex Clifford Analysis. Springer, 75-95.
[8]  Abreu Blaya, R., Bory Reyes, J. and Moreno García, T. (2011) A Biregular Extension Theorem from a Fractal Surface in. Georgian Mathematical Journal, 18, 21-29.
https://doi.org/10.1515/gmj.2011.0004
[9]  Lim, S. and Shon, K. (2016) Regular Functions with Values in a Noncommutative Algebra Using Clifford Analysis. Filomat, 30, 1747-1755.
https://doi.org/10.2298/fil1607747l
[10]  Guo, Y. and Wang, H. (2020) The Cauchy Integral Formula for Biregular Function in Octonionic Analysis. International Journal of Theoretical and Applied Mathematics, 6, 39-45.
https://doi.org/10.11648/j.ijtam.20200603.12
[11]  Kim, J. and Shon, K. (2021) Expansion of Implicit Mapping Theory to Split-Quaternionic Maps in Clifford Analysis. Filomat, 35, 3833-3840.
https://doi.org/10.2298/fil2111833k
[12]  Dinh, D.C. (2024) Cauchy-Riemann Operator in Cayley-Dickson-Clifford Analysis. Boletín de la Sociedad Matemática Mexicana, 30, Article No. 89.
https://doi.org/10.1007/s40590-024-00665-w
[13]  Lindelöf, E. (1903) Sur la Détermination de la Croissance des Fonctions Entìeres Définies Par un Développement de Taylor. Dairy Bull, 27, 213-226.
[14]  Pringsheim, A. (1904) Elementare Theorie der ganzen transcendenten Funktionen von endlicher Ordnung. Mathematische Annalen, 58, 257-342.
https://doi.org/10.1007/bf01444962
[15]  Wiman, A. (1914) Über den Zusammenhang Zwischen dem Maximalbetrage Einer Analytischen Funktion und dem Grössten Gliede der Zugehörigen Taylor’schen Reihe. Acta Mathematica, 37, 305-326.
https://doi.org/10.1007/bf02401837
[16]  Valiron, G. (1949) Lectures on the General Theory of Integral Functions. Chelsea, 47-130.
[17]  Nevanlinna, R. (1925) Zur Theorie der Meromorphen Funktionen. Acta Mathematica, 46, 1-99.
https://doi.org/10.1007/bf02543858
[18]  MacLane, G.R. (1963) Asymptotic Values of Holomorphic Functions. Rice University Studies.
[19]  Hayman, W.K. (1974) The Local Growth of Power Series: A Survey of the Wiman-Valiron Method. Canadian Mathematical Bulletin, 17, 317-358.
https://doi.org/10.4153/cmb-1974-064-0
[20]  Jank, G. and Volkmann, L. (1985) Meromorphe Funktionen und Differentialgleichungen. UTB Birkhäuser, 50-86.
[21]  De Almeida, R. and Kraußhar, R.S. (2015) Basics on Growth Orders of Polymonogenic Functions. Complex Variables and Elliptic Equations, 60, 1480-1504.
https://doi.org/10.1080/17476933.2015.1031121
[22]  De Almeida, R. and Kraußhar, R.S. (2017) Wiman-Valiron Theory for Higher Dimensional Polynomial Cauchy-Riemann Equations. Mathematical Methods in the Applied Sciences, 41, 15-27.
https://doi.org/10.1002/mma.4591
[23]  Alpay, D., Colombo, F., Pinton, S., Sabadini, I. and Struppa, D.C. (2021) Infinite-Order Differential Operators Acting on Entire Hyperholomorphic Functions. The Journal of Geometric Analysis, 31, 9768-9799.
https://doi.org/10.1007/s12220-021-00627-y
[24]  Colombo, F., Krausshar, R.S., Pinton, S. and Sabadini, I. (2024) Entire Monogenic Functions of Given Proximate Order and Continuous Homomorphisms. Mediterranean Journal of Mathematics, 21, Article No. 44.
https://doi.org/10.1007/s00009-023-02585-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133