This research examines the financial challenges faced by small and medium enterprises (SMEs) in Morocco, which play a vital role in the country’s economy. However, many SMEs struggle with financial instability, leading to high failure rates. This study focuses on identifying key factors that contribute to business failure. A quantitative approach was applied, utilizing discriminant analysis to assess the differences between successful and failing SMEs. The findings reveal that liquidity and profitability are critical to distinguishing between the two groups, with failing companies showing weaker performance in these areas. This research highlights the importance of financial management practices in mitigating the risk of failure in Moroccan SMEs. It emphasizes the need for effective financial strategies, particularly in managing liquidity and improving profitability, to ensure the sustainability and success of SMEs in the Moroccan context.
References
[1]
Abidin, J. Z., Abdullah, N. A. H., & Khaw, K. L. H. (2020). Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models. CapitalMarketsReview,28, 29-41. https://www.mfa.com.my/wp-content/uploads/2020/11/v28_i2_a3_pg29-41.pdf
[2]
Acosta-González, E., Fernández-Rodríguez, F., & Ganga, H. (2019). Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data. ComputationalEconomics,53, 227-257. https://doi.org/10.1007/s10614-017-9737-x
[3]
Almamy, J., Aston, J., & Ngwa, L. N. (2016). An Evaluation of Altman’s Z-Score Using Cash Flow Ratio to Predict Corporate Failure Amid the Recent Financial Crisis: Evidence from the Uk. JournalofCorporateFinance,36, 278-285. https://doi.org/10.1016/j.jcorpfin.2015.12.009
[4]
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. TheJournalofFinance,23, 589-609. https://doi.org/10.2307/2978933
[5]
Amankwah-Amoah, J., & Wang, X. (2019). Business Failures around the World: Emerging Trends and New Research Agenda. JournalofBusinessResearch,98, 367-369. https://doi.org/10.1016/j.jbusres.2019.02.064
[6]
Appiah, K. O., Chizema, A., & Arthur, J. (2015). Predicting Corporate Failure: A Systematic Literature Review of Methodological Issues. InternationalJournalofLawandManagement,57, 461-485. https://doi.org/10.1108/ijlma-04-2014-0032
[7]
Argenti, J. (1976). Corporate Planning and Corporate Collapse. LongRangePlanning,9, 12-17. https://doi.org/10.1016/0024-6301(76)90006-6
[8]
Assaad, R., & El-adaway, I. H. (2020). Enhancing the Knowledge of Construction Business Failure: A Social Network Analysis Approach. JournalofConstructionEngineeringandManagement,146, Article 04020052. https://doi.org/10.1061/(asce)co.1943-7862.0001831
[9]
Aziz, M. A., & Dar, H. A. (2006). Predicting Corporate Bankruptcy: Where We Stand? CorporateGovernance:The International Journal of Business in Society,6, 18-33. https://doi.org/10.1108/14720700610649436
[10]
Bateni, L., & Asghari, F. (2020). Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis. ComputationalEconomics,55, 335-348. https://doi.org/10.1007/s10614-016-9590-3
[11]
Bayhan, A. C. (2023). Predicting Financial Failure and Bankruptcy: Predictive Analytics Models on Financial Failure and Bankruptcy. In F. Özsungur, N. Tetik, & E. Kanat (Eds.), Bankruptcy and Reorganization in the Digital Business Era (pp. 10-22). IGI Global. https://doi.org/10.4018/978-1-6684-5181-6.ch002
[12]
Beaver, W. H. (1966). Financial Ratios as Predictors of Failure. JournalofAccountingResearch,4, 71-111. https://doi.org/10.2307/2490171
[13]
Berryman, J. (1983). Small Business Failure and Survey of the Literature. EuropeanSmallBusinessJournal,1, 47-59. https://doi.org/10.1177/026465608300100404
[14]
Cacciotti, G., Hayton, J. C., Mitchell, J. R., & Giazitzoglu, A. (2016). A Reconceptualization of Fear of Failure in Entrepreneurship. JournalofBusinessVenturing,31, 302-325. https://doi.org/10.1016/j.jbusvent.2016.02.002
[15]
Cherqi, N., & Boulaich, M. A. (2020). Tests on Business Failure Processes in Morocco: Organizational and Managerial Aspect. Journal ofTourismandHospitalityManagement,8, 215-224. https://doi.org/10.17265/2328-2169/2020.05.004
[16]
Ciampi, F. (2015). Corporate Governance Characteristics and Default Prediction Modeling for Small Enterprises. An Empirical Analysis of Italian Firms. JournalofBusinessResearch,68, 1012-1025. https://doi.org/10.1016/j.jbusres.2014.10.003
[17]
Cohen, J. R., Krishnamoorthy, G., & Wright, A. (2004). The Corporate Governance Mosaic and Financial Reporting Quality. Journalof Accounting Literature,23, 87-152. https://ssrn.com/abstract=1086743
[18]
Contreras, S., Ghosh, A., & Hasan, I. (2023). The Effect of Bank Failures on Small Business Loans and Income Inequality. JournalofBanking&Finance,146, Article 106690. https://doi.org/10.1016/j.jbankfin.2022.106690
[19]
Coulibaly, A. D. (2004). LadéfaillancedesPMEbelges:Analysedesdéterminantsetmo-délisationstatistique(No.437). Presses universitaires de Louvain.
[20]
Crutzen, N., & Van Caillie, D. (2009). Vers une taxonomie des profils d’entrée dans un processus de défaillance: Un focus sur les micro-et petites entreprises en difficulté. RevueinternationaleP.M.E.,22, 103-128. https://doi.org/10.7202/038611ar
[21]
Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A Survey of Business Failures with an Emphasis on Prediction Methods and Industrial Applications. EuropeanJournalofOperationalResearch,90, 487-513. https://doi.org/10.1016/0377-2217(95)00070-4
[22]
Doğan, S., Koçak, D., & Atan, M. (2022). Financial Distress Prediction Using Support Vector Machines and Logistic Regression. In M.K. Terzioğlu (Eds.), Advances in Econometrics, Operational Research, Data Science and Actuarial Studies (pp. 429-452). Springer International Publishing. https://doi.org/10.1007/978-3-030-85254-2_26
[23]
El Mandili, A., & Elabjani, A. (2023). Understanding Entrepreneurial Failure of Newly Created Firms in the Moroccan Context: A Multidimensional and Exploratory Analysis. InternationalJournalofAccounting,Finance,Auditing,ManagementandEconomics,4, 673-700. https://doi.org/10.5281/zenodo.10028727
[24]
El Manzani, N., Asli, A., & El Manzani, Y. (2018). Les facteurs de l’échec entrepreneurial des PME marocaines: Une étude exploratoire. Marchéetorganisations,33, 105-144. https://doi.org/10.3917/maorg.033.0105
[25]
Fernando, J. M. R., Li, L., & Hou, Y. (. (2020). Corporate Governance and Correlation in Corporate Defaults. CorporateGovernance:AnInternationalReview,28, 188-206. https://doi.org/10.1111/corg.12306
[26]
Ferrier, W. J., Fhionnlaoich, C. M., Smith, K. G., & Grimm, C. M. (2002). The Impact of Performance Distress on Aggressive Competitive Behavior: A Reconciliation of Conflicting Views. ManagerialandDecisionEconomics,23, 301-316. https://doi.org/10.1002/mde.1067
[27]
Filipe, S. F., Grammatikos, T., & Michala, D. (2016). Forecasting Distress in European SME Portfolios. JournalofBanking&Finance,64, 112-135. https://doi.org/10.1016/j.jbankfin.2015.12.007
[28]
Fitzpatrick, P. J. (1934). Transitional Stages of a Business Failure. TheAccountingReview,9, 337-340. https://www.jstor.org/stable/238525
[29]
Flick, U. (2015). Introducing Research Methodology:A Beginner’s Guide to Doing a Research Project. Sage.
[30]
Gallucci, C., Santullli, R., Modina, M., & Formisano, V. (2023). Financial Ratios, Corporate Governance and Bank-Firm Information: A Bayesian Approach to Predict SMEs’ Default. JournalofManagementandGovernance,27, 873-892. https://doi.org/10.1007/s10997-021-09614-5
[31]
Gepp, A., & Kumar, K. (2015). Predicting Financial Distress: A Comparison of Survival Analysis and Decision Tree Techniques. ProcediaComputerScience,54, 396-404. https://doi.org/10.1016/j.procs.2015.06.046
[32]
Gissel, J.L., Giacomino, D., & Akers, M.D. (2007). A Review of Bankruptcy Prediction Studies: 1930 to Present. AccountingFacultyResearchandPublications,33, 1-42. https://www.jstor.org/stable/41948574
[33]
Hartmann, P. (2010). Interaction of Market and Credit Risk. JournalofBanking&Finance,34, 697-702. https://doi.org/10.1016/j.jbankfin.2009.10.013
[34]
Hosaka, T. (2019). Bankruptcy Prediction Using Imaged Financial Ratios and Convolutional Neural Networks. ExpertSystemswithApplications,117, 287-299. https://doi.org/10.1016/j.eswa.2018.09.039
[35]
Jabeur, S. B., & Serret, V. (2023). Bankruptcy Prediction Using Fuzzy Convolutional Neural Networks. ResearchinInternationalBusinessandFinance,64, Article 101844. https://doi.org/10.1016/j.ribaf.2022.101844
[36]
Kim, S. Y. (2011). Prediction of Hotel Bankruptcy Using Support Vector Machine, Artificial Neural Network, Logistic Regression, and Multivariate Discriminant Analysis. TheServiceIndustriesJournal,31, 441-468. https://doi.org/10.1080/02642060802712848
[37]
Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K. et al. (2021). Bankruptcy Prediction for SMEs Using Transactional Data and Two-Stage Multiobjective Feature Selection. DecisionSupportSystems,140, Article 113429. https://doi.org/10.1016/j.dss.2020.113429
[38]
Kücher, A., Mayr, S., Mitter, C., Duller, C., & Feldbauer-Durstmüller, B. (2020). Firm Age Dynamics and Causes of Corporate Bankruptcy: Age Dependent Explanations for Business Failure. ReviewofManagerialScience,14, 633-661. https://doi.org/10.1007/s11846-018-0303-2
[39]
Lee, C. K., Wiklund, J., Amezcua, A., Bae, T. J., & Palubinskas, A. (2022). Business Failure and Institutions in Entrepreneurship: A Systematic Review and Research Agenda. SmallBusinessEconomics,58, 1997-2023. https://doi.org/10.1007/s11187-021-00495-4
[40]
Lee, K. S., Park, J. Y., & Sung, C. S. (2021). An Exploratory Study on the Business Failure Recovery Factors of Serial Entrepreneurs: Focusing on Small Business. Asia-PacificJournalofBusinessVenturingandEntrepreneurship,16, 17-29.
[41]
Levratto, N. (2013). From Failure to Corporate Bankruptcy: A Review. JournalofInnovationandEntrepreneurship,2, Article No. 20. https://doi.org/10.1186/2192-5372-2-20
[42]
Li, Z., Crook, J., Andreeva, G., & Tang, Y. (2021). Predicting the Risk of Financial Distress Using Corporate Governance Measures. Pacific-Basin Finance Journal, 68, Article 101334. https://doi.org/10.1016/j.pacfin.2020.101334
[43]
Liang, D., Lu, C., Tsai, C., & Shih, G. (2016). Financial Ratios and Corporate Governance Indicators in Bankruptcy Prediction: A Comprehensive Study. EuropeanJournalofOperationalResearch,252, 561-572. https://doi.org/10.1016/j.ejor.2016.01.012
[44]
Malécot, J. (1991). Analyses théoriques des défaillances d’entreprises: Une revue de la littérature. Revued’économiefinancière,19, 205-227. https://doi.org/10.3406/ecofi.1991.1746
[45]
Maricica, M., & Georgeta, V. (2012). Business Failure Risk Analysis Using Financial Ratios. Procedia-SocialandBehavioralSciences,62, 728-732. https://doi.org/10.1016/j.sbspro.2012.09.123
[46]
Martin, D. (1977). Early Warning of Bank Failure: A Logit Regression Approach. JournalofBanking&Finance,1, 249-276. https://doi.org/10.1016/0378-4266(77)90022-x
[47]
Messier, W. F., & Hansen, J. V. (1988). Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data. ManagementScience,34, 1403-1415. https://doi.org/10.1287/mnsc.34.12.1403
[48]
Morrison, C. (2021). TheInfluenceofBusinessFailureAwarenessuponRenascentEntrepreneurialIntention:AnApplicationoftheTheoryofPlannedBehaviour. Doctoral Dissertation, University of Newcastle.
[49]
Ooghe, H., & De Prijcker, S. (2008). Failure Processes and Causes of Company Bankruptcy: A Typology. ManagementDecision,46, 223-242. https://doi.org/10.1108/00251740810854131
[50]
Opler, T. C., & Titman, S. (1994). Financial Distress and Corporate Performance. TheJournalofFinance,49, 1015-1040. https://doi.org/10.2307/2329214
[51]
Özcan, A. (2020). The Use of Cash Flow Statement in Predicting Business Failure: Evidence from an Emerging Market. YönetimBilimleriDergisi,18, 373-387. https://doi.org/10.35408/comuybd.633337
[52]
Pituch, K. A., & Stevens, J. P. (2015). Applied Multivariate Statistics forthe Social Sciences:AnalyseswithSASandIBM’sSPSS. Routledge. https://doi.org/10.4324/9781315814919
[53]
Rizzo, L., Valentinuz, G., Obratil, D., & Pediroda, V. (2020). Bankruptcy Prediction: A Model Based on Cash Flow Ratios: Evidence from Selected European Countries. InternationalJournalofBusinessAdministration,11, 89-108. https://doi.org/10.5430/ijba.v11n6p89
[54]
Séverin, É. (2006). La renégociation financière des entreprises en difficulté. Revuefrançaisedegestion,32, 33-50. https://doi.org/10.3166/rfg.166.33-50
[55]
Sfakianakis, E. (2021). Bankruptcy Prediction Model for Listed Companies in Greece. InvestmentManagementandFinancialInnovations,18, 166-180. https://doi.org/10.21511/imfi.18(2).2021.14
[56]
Shi, Y., & Li, X. (2019). An Overview of Bankruptcy Prediction Models for Corporate Firms: A Systematic Literature Review. IntangibleCapital,15, 114-127. https://doi.org/10.3926/ic.1354
[57]
Smida, A., & Gómez Mejía, A. (2010). Entreprise stressée. Un essai de conceptualisation et une typologie. Management&Avenir,35, 130-148. https://doi.org/10.3917/mav.035.0130
[58]
Valaskova, K., Gajdosikova, D., & Belas, J. (2023). Bankruptcy Prediction in the Post-Pandemic Period: A Case Study of Visegrad Group Countries. OeconomiaCopernicana,14, 253-293. https://doi.org/10.24136/oc.2023.007
[59]
Voda, A. D., Dobrotă, G., Țîrcă, D. M., Dumitrașcu, D. D., & Dobrotă, D. (2021). Corporate Bankruptcy and Insolvency Prediction Model. TechnologicalandEconomicDevelopmentofEconomy,27, 1039-1056. https://doi.org/10.3846/tede.2021.15106
[60]
Weber, M. (2017). Methodologyof Social Sciences. Routledge.
[61]
Wu, Y., Gaunt, C., & Gray, S. (2010). A Comparison of Alternative Bankruptcy Prediction Models. JournalofContemporaryAccounting&Economics,6, 34-45. https://doi.org/10.1016/j.jcae.2010.04.002
[62]
Zemis, D., & Demil, B. (2020). Infléchir la trajectoire de défaillance de la PME: Actions du dirigeant et de l’équipe dédiée au redressement. Revuedel’Entrepreneuriat,19, 67-92. https://doi.org/10.3917/entre1.192.0067
[63]
Zizi, Y., Oudgou, M., & El Moudden, A. (2020). Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach. Risks,8, Article 107. https://doi.org/10.3390/risks8040107