Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling.
References
[1]
Afshooni, S. Z., Mirnejad, H., Esmaeily, D., & Haroni, H. A. (2013). Mineral Chemistry of Hydrothermal Biotite from the Kahang Porphyry Copper Deposit (NE Isfahan), Central Province of Iran. Ore Geology Reviews, 54, 214-232. https://doi.org/10.1016/j.oregeorev.2013.04.004
[2]
Afzal, P., Alghalandis, Y. F., Moarefvand, P., Omran, N. R., & Haroni, H. A. (2012). Application of Power-Spectrum-Volume Fractal Method for Detecting Hypogene, Supergene Enrichment, Leached and Barren Zones in Kahang Cu Porphyry Deposit, Central Iran. Journal of Geochemical Exploration, 112, 131-138. https://doi.org/10.1016/j.gexplo.2011.08.002
[3]
Bensaid, A. M., Hall, L. O., Bezdek, J. C., Clarke, L. P., Silbiger, M. L., Arrington, J. A. et al. (1996). Validity-Guided (re)clustering with Applications to Image Segmentation. IEEE Transactions on Fuzzy Systems, 4, 112-123. https://doi.org/10.1109/91.493905
[4]
Bezdek, J. C. (1975). Mathematical Models for Systematics and Taxonomy. In 8th International Conference on Numerical Taxonomy (pp. 143-166).
[5]
Bezdek†, J. C. (1974). Cluster Validity with Fuzzy Sets. Journal of Cybernetics, 3, 58-73. https://doi.org/10.1080/01969727308546047
[6]
Bourgault, G., Marcotte, D., & Legendre, P. (1992). The Multivariate (Co)variogram as a Spatial Weighting Function in Classification Methods. Mathematical Geology, 24, 463-478. https://doi.org/10.1007/bf00890530
[7]
Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227. https://doi.org/10.1109/tpami.1979.4766909
[8]
Defays, D. (1977). An Efficient Algorithm for a Complete Link Method. The Computer Journal, 20, 364-366. https://doi.org/10.1093/comjnl/20.4.364
[9]
Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4, 95-104. https://doi.org/10.1080/01969727408546059
[10]
Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory Review of Deep Learning for Prediction Models with Big Data. Frontiers in Artificial Intelligence, 3, Article 4. https://doi.org/10.3389/frai.2020.00004
[11]
Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis (5th ed.). Wiley. https://doi.org/10.1002/9780470977811
[12]
Faraj, F., & Ortiz, J. M. (2021). A Simple Unsupervised Classification Workflow for Defining Geological Domains Using Multivariate Data. Mining, Metallurgy & Exploration, 38, 1609-1623. https://doi.org/10.1007/s42461-021-00428-5
[13]
Fouedjio, F. (2016). A Hierarchical Clustering Method for Multivariate Geostatistical Data. Spatial Statistics, 18, 333-351. https://doi.org/10.1016/j.spasta.2016.07.003
[14]
Frey, B. J., & Dueck, D. (2007). Clustering by Passing Messages between Data Points. Science, 315, 972-976. https://doi.org/10.1126/science.1136800
[15]
Gan, G., Ma, C., & Wu, J. (2020). Data Clustering: Theory, Algorithms, and Applications, Second Edition. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611976335
[16]
Gustafson, D., & Kessel, W. (1978). Fuzzy Clustering with a Fuzzy Covariance Matrix. In 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes (pp. 761-766). IEEE. https://doi.org/10.1109/cdc.1978.268028
[17]
Hadiloo, S., Mirzaei, S., Hashemi, H., & Beiranvand, B. (2018). Comparison between un-Supervised and Supervised Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps. Geopersia, 8, 27-34.
[18]
Hartigan, J. A. (1975). Clustering Algorithms, Wiley Series in Probability and Mathematical Statistics (p. 365). John Wiley & Sons Inc.
[19]
Haschke, M., Ahmadian, J., Murata, M., & McDonald, I. (2010). Copper Mineralization Prevented by Arc-Root Delamination during Alpine-Himalayan Collision in Central Iran. Economic Geology, 105, 855-865. https://doi.org/10.2113/gsecongeo.105.4.855
[20]
Hossein Morshedy, A., Torabi, S. A., & Memarian, H. (2015). A New Method for 3D Designing of Complementary Exploration Drilling Layout Based on Ore Value and Objective Functions. Arabian Journal of Geosciences, 8, 8175-8195. https://doi.org/10.1007/s12517-014-1754-7
[21]
Hubert, L., & Schultz, J. (1976). Quadratic Assignment as a General Data Analysis Strategy. British Journal of Mathematical and Statistical Psychology, 29, 190-241. https://doi.org/10.1111/j.2044-8317.1976.tb00714.x
[22]
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Information Sciences, 622, 178-210. https://doi.org/10.1016/j.ins.2022.11.139
[23]
Jain, A. K. (2010). Data Clustering: 50 Years Beyond K-means. Pattern Recognition Letters, 31, 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
[24]
Jiang, J., Chen, M., & Fan, J. A. (2021). Deep Neural Networks for the Evaluation and Design of Photonic Devices. Nature Reviews Materials, 6, 679-700. https://doi.org/10.1038/s41578-020-00260-1
[25]
Kaufman, L., & Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction to Cluster Analysis (p. 342). Wiley.
[26]
Khorram, F., Asghari, O., Memarian, H., Morshedy, A. H., & Emery, X. M. (2021). The Fuzzy Classification of Geometallurgical Domains. Bulletin of Geophysics and Oceanography, 62, 467-484.
[27]
Kohonen, T. (1998). The Self-Organizing Map. Neurocomputing, 21, 1-6. https://doi.org/10.1016/s0925-2312(98)00030-7
[28]
Krzanowski, W. J., & Lai, Y. T. (1985). A Criterion for Determining the Number of Groups in a Data Set Using Sum-Of-Squares Clustering. Biometrics, 44, 23-34. https://doi.org/10.2307/2531893
[29]
Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A State-Of The-Art Survey & Testbed of Fuzzy AHP (FAHP) Applications. Expert Systems with Applications, 65, 398-422. https://doi.org/10.1016/j.eswa.2016.08.064
[30]
MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, 281-297.
[31]
Miljković, D. (2017). Brief Review of Self-Organizing Maps. In 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1061-1066). IEEE. https://doi.org/10.23919/mipro.2017.7973581
[32]
National Iranian Copper Industries Co (NICICO) (2011). Summery Geological Report of Kahang Deposit (p. 23). (In Persian)
[33]
Oliver, M. A., & Webster, R. (1989). A Geostatistical Basis for Spatial Weighting in Multivariate Classification. Mathematical Geology, 21, 15-35. https://doi.org/10.1007/bf00897238
[34]
Oyelade, J., Isewon, I., Oladipupo, F., Aromolaran, O., Uwoghiren, E., Ameh, F. et al. (2016). Clustering Algorithms: Their Application to Gene Expression Data. Bioinformatics and Biology Insights, 10, 237-263. https://doi.org/10.4137/bbi.s38316
[35]
Romary, T., Ors, F., Rivoirard, J., & Deraisme, J. (2015). Unsupervised Classification of Multivariate Geostatistical Data: Two Algorithms. Computers & Geosciences, 85, 96-103. https://doi.org/10.1016/j.cageo.2015.05.019
[36]
Rousseeuw, P. J. (1987). Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
[37]
Ruspini, E. H., Bezdek, J. C., & Keller, J. M. (2019). Fuzzy Clustering: A Historical Perspective. IEEE Computational Intelligence Magazine, 14, 45-55. https://doi.org/10.1109/mci.2018.2881643
[38]
Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya, R. (2017). DDoS Attacks in Cloud Computing: Issues, Taxonomy, and Future Directions. Computer Communications, 107, 30-48. https://doi.org/10.1016/j.comcom.2017.03.010
[39]
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S. et al. (2015). Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65, 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
[40]
Wang, H., Wang, J., & Wang, G. (2022). A Survey of Fuzzy Clustering Validity Evaluation Methods. Information Sciences, 618, 270-297. https://doi.org/10.1016/j.ins.2022.11.010
[41]
Xie, X. L., & Beni, G. (1991). A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 841-847. https://doi.org/10.1109/34.85677
[42]
Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2, 165-193. https://doi.org/10.1007/s40745-015-0040-1
[43]
Xu, R., & WunschII, D. (2005). Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16, 645-678. https://doi.org/10.1109/tnn.2005.845141
[44]
Zhu, L., & Li, S. (2017). Application of Clustering Algorithms in Geological Data Analysis: A Review. Mathematical Problems in Engineering, 2017, 1-14.