全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Occurrence of Different Classes of Solar Flares during the Solar Cycles 23 and 24

DOI: 10.4236/jhepgc.2025.111004, PP. 28-38

Keywords: Solar Flare, Solar Cycle, Solar Cycle Phase, Solar Flare Class, Occurrence

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time.

References

[1]  Palmer, S.J., Rycroft, M.J. and Cermack, M. (2006) Solar and Geomagnetic Activity, Extremely Low Frequency Magnetic and Electric Fields and Human Health at the Earth’s Surface. Surveys in Geophysics, 27, 557-595.
https://doi.org/10.1007/s10712-006-9010-7
[2]  Carrington, R.C. (1859) Description of a Singular Appearance Seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13-15.
https://doi.org/10.1093/mnras/20.1.13
[3]  Uusitalo, J., Golubenko, K., Arppe, L., Brehm, N., Hackman, T., Hayakawa, H., et al. (2024) Transient Offset in 14C after the Carrington Event Recorded by Polar Tree Rings. Geophysical Research Letters, 51, GL106632.
https://doi.org/10.1029/2023gl106632
[4]  Hudson, H.S., Cliver, E.W., Fletcher, L., Diver, D.A., Gallagher, P.T., Li, Y., et al. (2024) An Impulsive Geomagnetic Effect from an Early-Impulsive Flare. Monthly Notices of the Royal Astronomical Society, 532, 3120-3125.
https://doi.org/10.1093/mnras/stae1720
[5]  Le, H., Liu, L., Chen, B., Lei, J., Yue, X. and Wan, W. (2007) Modeling the Responses of the Middle Latitude Ionosphere to Solar Flares. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1587-1598.
https://doi.org/10.1016/j.jastp.2007.06.005
[6]  Grodji, O.D.F., Doumbia, V., Amaechi, P.O., Amory-Mazaudier, C., N’guessan, K., Diaby, K.A.A., et al. (2021) A Study of Solar Flare Effects on the Geomagnetic Field Components during Solar Cycles 23 and 24. Atmosphere, 13, Article 69.
https://doi.org/10.3390/atmos13010069
[7]  Jiang, H., Matsuura, R. and Wang, J.T.L. (2024) Multiclass Classification of Solar Flares in Imbalanced Data Using Ensemble Learning and Sampling Methods. The International FLAIRS Conference Proceedings, 37, 1-7.
https://doi.org/10.32473/flairs.37.1.135365
[8]  Zainol, N.H., et al. (2016) The Formation of Fundamental Structure of Solar Radio Burst Type II Due X6.9 Class Solar Flare.
[9]  Kepa, A., Siarkowski, M., Awasthi, A.K., Sylwester, B. and Sylwester, J. (2024) A Multi-Thermal Analysis of M-Class Flare Observed in Common by STIX and XSM.
https://meetingorganizer.copernicus.org/EGU23/EGU23-13784.html
[10]  Matsumoto, K., Masuda, S., Shimojo, M. and Hayakawa, H. (2023) Relationship of Peak Fluxes of Solar Radio Bursts and X-Ray Class of Solar Flares: Application to Early Great Solar Flares. Publications of the Astronomical Society of Japan, 75, 1095-1104.
https://doi.org/10.1093/pasj/psad058
[11]  Niu, Y., Li, B., Zhao, X., Wang, Z., Yang, S. and Zheng, Z. (2023) Research on Satellite Navigation and Communication Environment Monitoring Based on Very Low Frequency. International Conference on Mechatronics and Intelligent Control (ICMIC 2023), Wuhan, 26 September 2023, 127930K.
https://doi.org/10.1117/12.3006422
[12]  Kolarski, A., Srećković, V.A. and Arnaut, F. (2023) Low Intensity Solar Flares’ Impact: Numerical Modeling. Contributions of the Astronomical Observatory Skalnaté Pleso, 53, 176-187.
https://doi.org/10.31577/caosp.2023.53.3.176
[13]  Beer, J., Tobias, S.M. and Weiss, N. (1998) An Active Sun throughout the Maunder Minimum. Solar Physics, 181, 237-249.
https://doi.org/10.1023/A:1005026001784
[14]  Yaacob, N., Abdullah, M. and Ismail, M. (2010) GPS Total Electron Content (TEC) Prediction at Ionosphere Layer over the Equatorial Region. In: Bouras, C.J., Ed., Trends in Telecommunications Technologies, InTech, 486-508.
https://doi.org/10.5772/8474
[15]  Krainev, M.B. (2004) Main Phases of the Solar Cycle in the Galactic Cosmic Ray Intensity. International Journal of Geomagnetism and Aeronomy, 5, GI2004.
[16]  Sawadogo, S., Gnabahou, D.A., Pahima, T. and Ouattara, F. (2024) Solar Activity: Towards a Standard Classification of Solar Phases from Cycle 1 to Cycle 24. Advances in Space Research, 73, 1041-1049.
https://doi.org/10.1016/j.asr.2023.11.011
[17]  Toriumi, S. and Park, S.-H. (2022) Solar Flares and Magnetic Helicity. arXiv: 2204.06010.
https://doi.org/10.48550/arXiv.2204.06010
[18]  Kumar, R., Jouve, L., Pinto, R.F. and Rouillard, A.P. (2018) Production of Sunspots and Their Effects on the Corona and Solar Wind: Insights from a New 3D Flux-Transport Dynamo Model. Frontiers in Astronomy and Space Sciences, 5, Article 4.
https://doi.org/10.3389/fspas.2018.00004
[19]  Ossendrijver, M. (2003) The Solar Dynamo. Astronomy and Astrophysics Review, 11, 287-367.
https://doi.org/10.1007/s00159-003-0019-3
[20]  Ouattara, F. and Amory-Mazaudier, C. (2009) Solar-Geomagnetic Activity and Aa Indices toward a Standard Classification. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1736-1748.
https://doi.org/10.1016/j.jastp.2008.05.001
[21]  Paluk, P., Khumlumlert, T., Kanlayaprasit, N. and Aiemsaad, N. (2017) The Solar Energetic Particle Propagation of Solar Flare Events on 24th Solar Cycle. Journal of Physics: Conference Series, 901, Article 012016.
https://doi.org/10.1088/1742-6596/901/1/012016
[22]  Király, P. (2005) Solar Energetic Particles. International Journal of Modern Physics A, 20, 6634-6641.
https://doi.org/10.1142/s0217751x05029678
[23]  Dhurve, A., Kumar Saxena, A., Tiwari, C.M. and Khandayat, S.K. (2023) Impact of Solar Flares and Geomagnetic Storms on Earth’s IMF and Solar Wind Velocity during the Descending Phase of Solar Cycle 24. International Journal of Innovative Research and Growth, 12, 144-150.
https://doi.org/10.26671/ijirg.2023.4.12.104
[24]  Cohen, C.M.S., Mason, G.M. and Mewaldt, R.A. (2017) Characteristics of Solar Energetic Ions as a Function of Longitude. The Astrophysical Journal, 843, Article 132.
https://doi.org/10.3847/1538-4357/aa7513
[25]  Stackhouse, D.J. and Kontar, E.P. (2018) Spatially Inhomogeneous Acceleration of Electrons in Solar Flares. Astronomy & Astrophysics, 612, A64.
https://doi.org/10.1051/0004-6361/201730708
[26]  Edgar, R.L. and Régnier, S. (2024) Properties of Magnetic Null Points Associated with X-Class Flares during Solar Cycle 24. Monthly Notices of the Royal Astronomical Society, 532, 755-762.
https://doi.org/10.1093/mnras/stae1470
[27]  Lin, J., Wang, F., Deng, L., Deng, H., Mei, Y. and Zhang, X. (2023) Evolutionary Relationship between Sunspot Groups and Soft X-Ray Flares over Solar Cycles 21-25. The Astrophysical Journal, 958, Article 1.
https://doi.org/10.3847/1538-4357/ad0469
[28]  Singh, A., Chaudhari, A., Sharma, G. and Singh, A.K. (2024) Variation in the Flaring Potential of Different Sunspot Groups during Different Phases of Solar Cycles 23 and 24. Research in Astronomy and Astrophysics, 24, Article 025012.
https://doi.org/10.1088/1674-4527/ad1922
[29]  Singh, K. and Singh, A.K. (2023) Occurrences of Different Types of Solar Flares with Sunspot Number during Solar Cycle 23-25. International Journal of Physics and Applications, 5, 20-23.
https://doi.org/10.33545/26647575.2023.v5.i2a.73
[30]  Özgüç, A., Kilcik, A., Georgieva, K. and Kirov, B. (2016) Temporal Offsets between Maximum CME Speed Index and Solar, Geomagnetic, and Interplanetary Indicators during Solar Cycle 23 and the Ascending Phase of Cycle 24. Solar Physics, 291, 1533-1546.
https://doi.org/10.1007/s11207-016-0909-y
[31]  Mohamad Ansor, N., Hamidi, Z.S. and Shariff, N.N.M. (2023) Characteristics of Different Groups of Flare-CME in the Minimum to Rising Phase of Solar Cycle 24. Sains Malaysiana, 52, 981-992.
https://doi.org/10.17576/jsm-2023-5203-21
[32]  Dagnew, F.K., Gopalswamy, N., Tessema, S.B., Akiyama, S. and Yashiro, S. (2022) Effect of the Heliospheric State on CME Evolution. The Astrophysical Journal, 936, Article 122.
https://doi.org/10.3847/1538-4357/ac8744
[33]  Gopalswamy, N., Mäkelä, P., Yashiro, S., Akiyama, S. and Xie, H. (2022) Solar Activity and Space Weather. Journal of Physics: Conference Series, 2214, Article 012021.
https://doi.org/10.1088/1742-6596/2214/1/012021
[34]  Maehara, H., Shibayama, T., Notsu, S., Notsu, Y., Nagao, T., Kusaba, S., et al. (2012) Superflares on Solar-Type Stars. Nature, 485, 478-481.
https://doi.org/10.1038/nature11063
[35]  Shibata, K., Isobe, H., Hillier, A., Choudhuri, A.R., Maehara, H., Ishii, T.T., et al. (2013) Can Superflares Occur on Our Sun? Publications of the Astronomical Society of Japan, 65, Article 49.
https://doi.org/10.1093/pasj/65.3.49
[36]  Koala, S., Sawadogo, Y. and Zerbo, J.L. (2022) Solar Wind and Geomagnetic Activity during Two Antagonist Solar Cycles: Comparative Study between the Solar Cycles 23 and 24. International Journal of Physical Sciences, 17, 57-66.
https://doi.org/10.5897/ijps2022.4998
[37]  Sawadogo, Y., Koala, S. and Zerbo, J.L. (2022) Factors of Geomagnetic Storms during the Solar Cycles 23 and 24: A Comparative Statistical Study. Scientific Research and Essays, 17, 46-56.
https://doi.org/10.5897/sre2022.6751
[38]  Manu, V., Balan, N., Zhang, Q. and Xing, Z. (2023) Double Superposed Epoch Analysis of Geomagnetic Storms and Corresponding Solar Wind and IMF in Solar Cycles 23 and 24. Space Weather, 21, SW003314.
https://doi.org/10.1029/2022sw003314
[39]  Mishra, W., Sahani, P.S., Khuntia, S. and Chakrabarty, D. (2024) Distribution and Recovery Phase of Geomagnetic Storms during Solar Cycles 23 and 24. Monthly Notices of the Royal Astronomical Society, 530, 3171-3182.
https://doi.org/10.1093/mnras/stae1045
[40]  Pipin, V.V., Kosovichev, A.G. and Tomin, V.E. (2023) Effects of Emerging Bipolar Magnetic Regions in Mean-Field Dynamo Model of Solar Cycles 23 and 24. The Astrophysical Journal, 949, Article 7.
https://doi.org/10.3847/1538-4357/acaf69
[41]  Manu, V., Balan, N., Zhang, Q.‐H. and Xing, Z.‐Y. (2022) Association of the Main Phase of the Geomagnetic Storms in Solar Cycles 23 and 24 with Corresponding Solar Wind‐IMF Parameters. Journal of Geophysical Research: Space Physics, 127, JA030747.
https://doi.org/10.1029/2022ja030747

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133