In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time.
References
[1]
Palmer, S.J., Rycroft, M.J. and Cermack, M. (2006) Solar and Geomagnetic Activity, Extremely Low Frequency Magnetic and Electric Fields and Human Health at the Earth’s Surface. SurveysinGeophysics, 27, 557-595. https://doi.org/10.1007/s10712-006-9010-7
[2]
Carrington, R.C. (1859) Description of a Singular Appearance Seen in the Sun on September 1, 1859. MonthlyNoticesoftheRoyalAstronomicalSociety, 20, 13-15. https://doi.org/10.1093/mnras/20.1.13
[3]
Uusitalo, J., Golubenko, K., Arppe, L., Brehm, N., Hackman, T., Hayakawa, H., etal. (2024) Transient Offset in 14C after the Carrington Event Recorded by Polar Tree Rings. GeophysicalResearchLetters, 51, GL106632. https://doi.org/10.1029/2023gl106632
[4]
Hudson, H.S., Cliver, E.W., Fletcher, L., Diver, D.A., Gallagher, P.T., Li, Y., etal. (2024) An Impulsive Geomagnetic Effect from an Early-Impulsive Flare. MonthlyNoticesoftheRoyalAstronomicalSociety, 532, 3120-3125. https://doi.org/10.1093/mnras/stae1720
[5]
Le, H., Liu, L., Chen, B., Lei, J., Yue, X. and Wan, W. (2007) Modeling the Responses of the Middle Latitude Ionosphere to Solar Flares. JournalofAtmosphericandSolar-TerrestrialPhysics, 69, 1587-1598. https://doi.org/10.1016/j.jastp.2007.06.005
[6]
Grodji, O.D.F., Doumbia, V., Amaechi, P.O., Amory-Mazaudier, C., N’guessan, K., Diaby, K.A.A., etal. (2021) A Study of Solar Flare Effects on the Geomagnetic Field Components during Solar Cycles 23 and 24. Atmosphere, 13, Article 69. https://doi.org/10.3390/atmos13010069
[7]
Jiang, H., Matsuura, R. and Wang, J.T.L. (2024) Multiclass Classification of Solar Flares in Imbalanced Data Using Ensemble Learning and Sampling Methods. TheInternationalFLAIRSConferenceProceedings, 37, 1-7. https://doi.org/10.32473/flairs.37.1.135365
[8]
Zainol, N.H., etal. (2016) The Formation of Fundamental Structure of Solar Radio Burst Type II Due X6.9 Class Solar Flare.
[9]
Kepa, A., Siarkowski, M., Awasthi, A.K., Sylwester, B. and Sylwester, J. (2024) A Multi-Thermal Analysis of M-Class Flare Observed in Common by STIX and XSM. https://meetingorganizer.copernicus.org/EGU23/EGU23-13784.html
[10]
Matsumoto, K., Masuda, S., Shimojo, M. and Hayakawa, H. (2023) Relationship of Peak Fluxes of Solar Radio Bursts and X-Ray Class of Solar Flares: Application to Early Great Solar Flares. PublicationsoftheAstronomicalSocietyofJapan, 75, 1095-1104. https://doi.org/10.1093/pasj/psad058
[11]
Niu, Y., Li, B., Zhao, X., Wang, Z., Yang, S. and Zheng, Z. (2023) Research on Satellite Navigation and Communication Environment Monitoring Based on Very Low Frequency. InternationalConferenceonMechatronicsandIntelligentControl (ICMIC 2023), Wuhan, 26 September 2023, 127930K. https://doi.org/10.1117/12.3006422
[12]
Kolarski, A., Srećković, V.A. and Arnaut, F. (2023) Low Intensity Solar Flares’ Impact: Numerical Modeling. ContributionsoftheAstronomicalObservatorySkalnatéPleso, 53, 176-187. https://doi.org/10.31577/caosp.2023.53.3.176
[13]
Beer, J., Tobias, S.M. and Weiss, N. (1998) An Active Sun throughout the Maunder Minimum. Solar Physics, 181, 237-249. https://doi.org/10.1023/A:1005026001784
[14]
Yaacob, N., Abdullah, M. and Ismail, M. (2010) GPS Total Electron Content (TEC) Prediction at Ionosphere Layer over the Equatorial Region. In: Bouras, C.J., Ed., TrendsinTelecommunicationsTechnologies, InTech, 486-508. https://doi.org/10.5772/8474
[15]
Krainev, M.B. (2004) Main Phases of the Solar Cycle in the Galactic Cosmic Ray Intensity. InternationalJournalofGeomagnetismandAeronomy, 5, GI2004.
[16]
Sawadogo, S., Gnabahou, D.A., Pahima, T. and Ouattara, F. (2024) Solar Activity: Towards a Standard Classification of Solar Phases from Cycle 1 to Cycle 24. AdvancesinSpaceResearch, 73, 1041-1049. https://doi.org/10.1016/j.asr.2023.11.011
[17]
Toriumi, S. and Park, S.-H. (2022) Solar Flares and Magnetic Helicity. arXiv: 2204.06010. https://doi.org/10.48550/arXiv.2204.06010
[18]
Kumar, R., Jouve, L., Pinto, R.F. and Rouillard, A.P. (2018) Production of Sunspots and Their Effects on the Corona and Solar Wind: Insights from a New 3D Flux-Transport Dynamo Model. FrontiersinAstronomyandSpaceSciences, 5, Article 4. https://doi.org/10.3389/fspas.2018.00004
[19]
Ossendrijver, M. (2003) The Solar Dynamo. AstronomyandAstrophysicsReview, 11, 287-367. https://doi.org/10.1007/s00159-003-0019-3
[20]
Ouattara, F. and Amory-Mazaudier, C. (2009) Solar-Geomagnetic Activity and Aa Indices toward a Standard Classification. JournalofAtmosphericandSolar-TerrestrialPhysics, 71, 1736-1748. https://doi.org/10.1016/j.jastp.2008.05.001
[21]
Paluk, P., Khumlumlert, T., Kanlayaprasit, N. and Aiemsaad, N. (2017) The Solar Energetic Particle Propagation of Solar Flare Events on 24th Solar Cycle. JournalofPhysics:ConferenceSeries, 901, Article 012016. https://doi.org/10.1088/1742-6596/901/1/012016
[22]
Király, P. (2005) Solar Energetic Particles. InternationalJournalofModernPhysicsA, 20, 6634-6641. https://doi.org/10.1142/s0217751x05029678
[23]
Dhurve, A., Kumar Saxena, A., Tiwari, C.M. and Khandayat, S.K. (2023) Impact of Solar Flares and Geomagnetic Storms on Earth’s IMF and Solar Wind Velocity during the Descending Phase of Solar Cycle 24. InternationalJournalofInnovativeResearchandGrowth, 12, 144-150. https://doi.org/10.26671/ijirg.2023.4.12.104
[24]
Cohen, C.M.S., Mason, G.M. and Mewaldt, R.A. (2017) Characteristics of Solar Energetic Ions as a Function of Longitude. TheAstrophysicalJournal, 843, Article 132. https://doi.org/10.3847/1538-4357/aa7513
[25]
Stackhouse, D.J. and Kontar, E.P. (2018) Spatially Inhomogeneous Acceleration of Electrons in Solar Flares. Astronomy&Astrophysics, 612, A64. https://doi.org/10.1051/0004-6361/201730708
[26]
Edgar, R.L. and Régnier, S. (2024) Properties of Magnetic Null Points Associated with X-Class Flares during Solar Cycle 24. MonthlyNoticesoftheRoyalAstronomicalSociety, 532, 755-762. https://doi.org/10.1093/mnras/stae1470
[27]
Lin, J., Wang, F., Deng, L., Deng, H., Mei, Y. and Zhang, X. (2023) Evolutionary Relationship between Sunspot Groups and Soft X-Ray Flares over Solar Cycles 21-25. TheAstrophysicalJournal, 958, Article 1. https://doi.org/10.3847/1538-4357/ad0469
[28]
Singh, A., Chaudhari, A., Sharma, G. and Singh, A.K. (2024) Variation in the Flaring Potential of Different Sunspot Groups during Different Phases of Solar Cycles 23 and 24. ResearchinAstronomyandAstrophysics, 24, Article 025012. https://doi.org/10.1088/1674-4527/ad1922
[29]
Singh, K. and Singh, A.K. (2023) Occurrences of Different Types of Solar Flares with Sunspot Number during Solar Cycle 23-25. InternationalJournalofPhysicsandApplications, 5, 20-23. https://doi.org/10.33545/26647575.2023.v5.i2a.73
[30]
Özgüç, A., Kilcik, A., Georgieva, K. and Kirov, B. (2016) Temporal Offsets between Maximum CME Speed Index and Solar, Geomagnetic, and Interplanetary Indicators during Solar Cycle 23 and the Ascending Phase of Cycle 24. SolarPhysics, 291, 1533-1546. https://doi.org/10.1007/s11207-016-0909-y
[31]
Mohamad Ansor, N., Hamidi, Z.S. and Shariff, N.N.M. (2023) Characteristics of Different Groups of Flare-CME in the Minimum to Rising Phase of Solar Cycle 24. SainsMalaysiana, 52, 981-992. https://doi.org/10.17576/jsm-2023-5203-21
[32]
Dagnew, F.K., Gopalswamy, N., Tessema, S.B., Akiyama, S. and Yashiro, S. (2022) Effect of the Heliospheric State on CME Evolution. TheAstrophysicalJournal, 936, Article 122. https://doi.org/10.3847/1538-4357/ac8744
[33]
Gopalswamy, N., Mäkelä, P., Yashiro, S., Akiyama, S. and Xie, H. (2022) Solar Activity and Space Weather. JournalofPhysics:ConferenceSeries, 2214, Article 012021. https://doi.org/10.1088/1742-6596/2214/1/012021
Shibata, K., Isobe, H., Hillier, A., Choudhuri, A.R., Maehara, H., Ishii, T.T., etal. (2013) Can Superflares Occur on Our Sun? PublicationsoftheAstronomicalSocietyofJapan, 65, Article 49. https://doi.org/10.1093/pasj/65.3.49
[36]
Koala, S., Sawadogo, Y. and Zerbo, J.L. (2022) Solar Wind and Geomagnetic Activity during Two Antagonist Solar Cycles: Comparative Study between the Solar Cycles 23 and 24. InternationalJournalofPhysicalSciences, 17, 57-66. https://doi.org/10.5897/ijps2022.4998
[37]
Sawadogo, Y., Koala, S. and Zerbo, J.L. (2022) Factors of Geomagnetic Storms during the Solar Cycles 23 and 24: A Comparative Statistical Study. ScientificResearchandEssays, 17, 46-56. https://doi.org/10.5897/sre2022.6751
[38]
Manu, V., Balan, N., Zhang, Q. and Xing, Z. (2023) Double Superposed Epoch Analysis of Geomagnetic Storms and Corresponding Solar Wind and IMF in Solar Cycles 23 and 24. SpaceWeather, 21, SW003314. https://doi.org/10.1029/2022sw003314
[39]
Mishra, W., Sahani, P.S., Khuntia, S. and Chakrabarty, D. (2024) Distribution and Recovery Phase of Geomagnetic Storms during Solar Cycles 23 and 24. MonthlyNoticesoftheRoyalAstronomicalSociety, 530, 3171-3182. https://doi.org/10.1093/mnras/stae1045
[40]
Pipin, V.V., Kosovichev, A.G. and Tomin, V.E. (2023) Effects of Emerging Bipolar Magnetic Regions in Mean-Field Dynamo Model of Solar Cycles 23 and 24. TheAstrophysicalJournal, 949, Article 7. https://doi.org/10.3847/1538-4357/acaf69
[41]
Manu, V., Balan, N., Zhang, Q.‐H. and Xing, Z.‐Y. (2022) Association of the Main Phase of the Geomagnetic Storms in Solar Cycles 23 and 24 with Corresponding Solar Wind‐IMF Parameters. JournalofGeophysicalResearch:SpacePhysics, 127, JA030747. https://doi.org/10.1029/2022ja030747