|
基于前景理论的游客感知价值评估方法研究
|
Abstract:
在体验经济时代下,人们对旅游服务体验的诉求不断提升。由于线上公众意见能够更加真实地表达游客的体验和反馈,越来越多的消费者依赖公众分享的信息辅助进行旅行决策。在旅行决策中,消费者的感知价值发挥着关键作用。传统基于用户内容的推荐方法研究多从用户行为偏好视角进行研究,忽视了用户感知价值的作用,影响了旅游服务的个性化推荐效果。因此本文从感知价值视角出发,提出适用于公众意见的用户感知价值评估方法。首先,将用户期望作为前景理论参照点,通过词性抽取规则和半监督学习方法,有效解决了公众文本中用户期望信息稀缺的问题;其次,提出融合用户期望的群体聚类优化方法,提升了群体期望构建的准确性。进而,将前景理论和多属性决策模型结合评估用户感知价值。通过概率语言决策矩阵刻画公众意见,基于前景理论构建概率语言感知矩阵,将公众意见转化为感知价值。以TODIM方法为基础,集结大群体公众意见得到备选方案的量化评估。最后,基于真实旅游评论数据的实证研究验证了该方法的有效性,为提升个性化推荐效果提供了新思路。
In the era of experience economy, consumers’ demand for travel service experience is rising. Online public opinion can express tourists’ experiences and feedback more objectively, and more and more consumers rely on the information shared by the public to assist in their travel decisions. Consumers’ perceived value plays a key role in travel decision-making. The traditional user content-based recommendation methods are mostly studied from the perspective of user behavioral preferences, ignoring the influence of user perceived value, which affects the effect of personalized recommendation of travel services. Therefore, this paper proposes a user perceived value assessment method applicable to public opinion from the perspective of perceived value. Firstly, the user expectation is taken as the reference point of prospect theory, and the problem of scarcity of user expectation information in the public text is effectively solved by the lexical extraction rule and semi-supervised learning method. Secondly, the group clustering optimization method incorporating user expectation is proposed, which improves the accuracy of group expectation construction. Further, prospect theory and multi-attribute decision models are combined to assess the user’s perceived value. The public opinion is portrayed through the probabilistic linguistic decision matrix, and the probabilistic linguistic perception matrix is constructed based on the prospect theory, which transforms the public opinion into the perceived value. Based on the TODIM method, the quantitative assessment of alternatives is obtained by assembling large groups of public opinions. Finally, an empirical study based on real travel review data verifies the effectiveness of the method and provides new ideas for improving the effect of personalized recommendations.
[1] | Zou, L., Xia, L., Ding, Z., Song, J., Liu, W. and Yin, D. (2019) Reinforcement Learning to Optimize Long-Term User Engagement in Recommender Systems. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 2810-2818. https://doi.org/10.1145/3292500.3330668 |
[2] | 单晓红, 王春稳, 刘晓燕, 等. 基于在线评论的混合推荐算法[J]. 系统工程, 2019, 37(6): 130-138. |
[3] | 范文芳, 王千. 个性化智能推荐对消费者在线冲动购买意愿的影响研究[J]. 管理评论, 2022, 34(12): 146-156, 194. |
[4] | Adomavicius, G. and Tuzhilin, A. (2005) Toward the Next Generation of Recommender Systems: A Survey of the State-Of-The-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering, 17, 734-749. https://doi.org/10.1109/tkde.2005.99 |
[5] | Zeithaml, V.A. (1988) Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52, 2-22. https://doi.org/10.1177/002224298805200302 |
[6] | 张宏梅, 洪娟, 张文静. 旅游目的地游客感知价值的层次关系模型[J]. 人文地理, 2012, 27(4): 125-130. |
[7] | 吴佩, 王春雷. 基于网络游记的游客感知价值研究: 以上海为例[J]. 旅游论坛, 2016, 9(5): 34-39. |
[8] | Sánchez, J., Callarisa, L., Rodríguez, R.M. and Moliner, M.A. (2006) Perceived Value of the Purchase of a Tourism Product. Tourism Management, 27, 394-409. https://doi.org/10.1016/j.tourman.2004.11.007 |
[9] | 黄颖华, 黄福才. 旅游者感知价值模型、测度与实证研究[J]. 旅游学刊, 2007, 22(8): 42-47. |
[10] | Kahneman, D. and Tversky, A. (1979) Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47, 263-291. https://doi.org/10.2307/1914185 |
[11] | Fan, Z., Zhang, X., Chen, F. and Liu, Y. (2013) Multiple Attribute Decision Making Considering Aspiration-Levels: A Method Based on Prospect Theory. Computers & Industrial Engineering, 65, 341-350. https://doi.org/10.1016/j.cie.2013.02.013 |
[12] | 赵辉, 马胜彬, 卜泽慧, 张旭东. 基于前景理论的VIKOR犹豫模糊多属性决策方法研究[J]. 数学的实践与认识, 2020, 50(4): 124-136 |
[13] | 王志平, 傅敏, 王沛文. 概率犹豫模糊环境下基于前景理论和TOPSIS法的多属性群决策模型[J]. 科学技术与工程, 2022, 22(4): 1329-1337. |
[14] | 阎曼婷, 张全, 姜渴鑫. 基于前景理论的多属性决策方法研究[J]. 电脑知识与技术, 2020, 16(16): 1-2, 8. |
[15] | Zadeh, L.A. (1978) Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1, 3-28. https://doi.org/10.1016/0165-0114(78)90029-5 |
[16] | Wu, X. and Liao, H. (2018) An Approach to Quality Function Deployment Based on Probabilistic Linguistic Term Sets and ORESTE Method for Multi-Expert Multi-Criteria Decision Making. Information Fusion, 43, 13-26. https://doi.org/10.1016/j.inffus.2017.11.008 |
[17] | Pang, Q., Wang, H. and Xu, Z. (2016) Probabilistic Linguistic Term Sets in Multi-Attribute Group Decision Making. Information Sciences, 369, 128-143. https://doi.org/10.1016/j.ins.2016.06.021 |
[18] | Liu, P., Wang, X. and Teng, F. (2021) Online Teaching Quality Evaluation Based on Multi-Granularity Probabilistic Linguistic Term Sets. Journal of Intelligent & Fuzzy Systems, 40, 9915-9935. https://doi.org/10.3233/jifs-202543 |
[19] | Darko, A.P., Liang, D., Xu, Z., Agbodah, K. and Obiora, S. (2023) A Novel Multi-Attribute Decision-Making for Ranking Mobile Payment Services Using Online Consumer Reviews. Expert Systems with Applications, 213, Article ID: 119262. https://doi.org/10.1016/j.eswa.2022.119262 |
[20] | 周欢, 马浩南, 刘嘉. 融合情感分析和概率语言的影视推荐算法研究[J]. 情报理论与实践, 2020, 43(6): 180-186. |
[21] | 高建伟, 李响珍. 基于概率语言术语信息的前景决策方法[J]. 计算机应用研究, 2021, 38(7): 1973-1978. |
[22] | 胡甜媛, 姜瑛. 体现使用反馈的APP软件用户评论挖掘[J]. 软件学报, 2019, 30(10): 3168-3185. |