|
多巴胺及其信号通路在近视发病机制中的作用研究进展
|
Abstract:
近视对儿童和青少年的视力健康构成了严重威胁,其发病率逐年增长,已经变成全球性的公共健康难题,但其病理机制仍未完全明确。多巴胺(DA)是视网膜上的关键神经递质,在实验性近视的生成和抑制过程中,通过结合相应受体发挥至关重要的作用,而其相关信号通路在近视产生和进展过程中的具体机制也受到了广泛的关注。本文将针对在近视的发病机制中多巴胺及其受体产生的作用进行综述,旨在深入了解近视疾病机制,为其预防与治疗提供新的靶点。
Myopia is a serious threat to the vision health of children and adolescents, with an increasing incidence rate and becoming a global public health problem. However, its pathological mechanism is still not completely clear. Dopamine is a key neurotransmitter in the retina, which plays a crucial role in the generation and inhibition of experimental myopia by binding to its corresponding receptors. The specific mechanism of its related signaling pathways in the development and progression of myopia has also received extensive attention. This article reviews the role of dopamine and its receptors in the pathogenesis of myopia, in order to understand the mechanism of myopia and provide new targets for the prevention and treatment of this disease.
[1] | 叶天宇, 郝琪, 毕宏生, 等. 骨形成蛋白及其信号通路在近视发病机制中作用的研究进展[J]. 眼科新进展, 2023, 43(7): 575-579. |
[2] | 向小玲, 杨琴, 兰长骏, 等. 多巴胺能与胆碱能通路在近视发生发展中的作用研究进展[J]. 国际眼科杂志, 2022, 22(9): 1500-1503. |
[3] | Hirasawa, H., Contini, M. and Raviola, E. (2015) Extrasynaptic Release of GABA and Dopamine by Retinal Dopaminergic Neurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, Article ID: 20140186. https://doi.org/10.1098/rstb.2014.0186 |
[4] | Liu, H., Schaeffel, F., Trier, K. and Feldkaemper, M. (2019) Effects of 7-Methylxanthine on Deprivation Myopia and Retinal Dopamine Release in Chickens. Ophthalmic Research, 63, 347-357. https://doi.org/10.1159/000502529 |
[5] | 李兆生, 余继锋, 赵寅政, 等. 多巴胺与近视相关性的研究进展[J]. 中国斜视与小儿眼科杂志, 2022, 30(2): 40-42, 34. |
[6] | Ji, S., Mao, X., Zhang, Y., Ye, L. and Dai, J. (2021) Contribution of M-Opsin-Based Color Vision to Refractive Development in Mice. Experimental Eye Research, 209, Article ID: 108669. https://doi.org/10.1016/j.exer.2021.108669 |
[7] | Connaughton, V.P., Wetzell, B., Arneson, L.S., DeLucia, V. and L. Riley, A. (2015) Elevated Dopamine Concentration in Light‐adapted Zebrafish Retinas Is Correlated with Increased Dopamine Synthesis and Metabolism. Journal of Neurochemistry, 135, 101-108. https://doi.org/10.1111/jnc.13264 |
[8] | Landis, E.G., Chrenek, M.A., Chakraborty, R., Strickland, R., Bergen, M., Yang, V., et al. (2020) Increased Endogenous Dopamine Prevents Myopia in Mice. Experimental Eye Research, 193, Article ID: 107956. https://doi.org/10.1016/j.exer.2020.107956 |
[9] | Bergen, M.A., Park, H.N., Chakraborty, R., Landis, E.G., Sidhu, C., He, L., et al. (2016) Altered Refractive Development in Mice with Reduced Levels of Retinal Dopamine. Investigative Opthalmology & Visual Science, 57, 4412-4419. https://doi.org/10.1167/iovs.15-17784 |
[10] | Mao, J., Liu, S., Qin, W., Li, F., Wu, X. and Tan, Q. (2010) Levodopa Inhibits the Development of Form-Deprivation Myopia in Guinea Pigs. Optometry and Vision Science, 87, 53-60. https://doi.org/10.1097/opx.0b013e3181c12b3d |
[11] | Ward, A.H., Siegwart, J.T., Frost, M.R. and Norton, T.T. (2017) Intravitreally-administered Dopamine D2-Like (and D4), but Not D1-Like, Receptor Agonists Reduce Form-Deprivation Myopia in Tree Shrews. Visual Neuroscience, 34, E003. https://doi.org/10.1017/s0952523816000195 |
[12] | Dong, F., Zhi, Z., Pan, M., et al. (2011) Inhibition of Experimental Myopia by a Dopamine Agonist: Different Effectiveness between Form Deprivation and Hyperopic Defocus in Guinea Pigs. Molecular Vision, 17, 2824-2834. |
[13] | Huang, F., Wang, Q., Yan, T., Tang, J., Hou, X., Shu, Z., et al. (2020) The Role of the Dopamine D2 Receptor in Form-Deprivation Myopia in Mice: Studies with Full and Partial D2 Receptor Agonists and Knockouts. Investigative Opthalmology & Visual Science, 61, 47. https://doi.org/10.1167/iovs.61.6.47 |
[14] | 丁婕, 郭滨, 李忠恩, 等. 多巴胺在常见眼科疾病治疗中的应用研究进展[J]. 山东医药, 2023, 63(23): 108-111. |
[15] | Chen, S., Zhi, Z., Ruan, Q., Liu, Q., Li, F., Wan, F., et al. (2017) Bright Light Suppresses Form-Deprivation Myopia Development with Activation of Dopamine D1 Receptor Signaling in the on Pathway in Retina. Investigative Opthalmology & Visual Science, 58, 2306-2316. https://doi.org/10.1167/iovs.16-20402 |
[16] | Lee, E.H., Park, K., Kim, K., Lee, J., Jang, E.J., Ku, S.K., et al. (2019) Liquiritigenin Inhibits Hepatic Fibrogenesis and TGF-β1/smad with Hippo/Yap Signal. Phytomedicine, 62, Article ID: 152780. https://doi.org/10.1016/j.phymed.2018.12.003 |
[17] | Morice, S., Danieau, G., Tesfaye, R., Mullard, M., Brion, R., Dupuy, M., et al. (2021) Involvement of the TGF-β Signaling Pathway in the Development of Yap-Driven Osteosarcoma Lung Metastasis. Frontiers in Oncology, 11, Article 765711. https://doi.org/10.3389/fonc.2021.765711 |
[18] | Fan, Q., Pozarickij, A., Tan, N.Y.Q., et al. (2020) Genome-Wide Association Meta-Analysis of Corneal Curvature Identifies Novel Loci and Shared Genetic Influences across Axial Length and Refractive Error. Communications Biology, 3, Article No. 133. |
[19] | Gong, Q., Janowski, M., Xie, M., Yang, G. and Liu, L. (2017) Rasgrf1 mRNA Expression in Myopic Eyes of Guinea Pigs. Clinical and Experimental Optometry, 100, 174-178. https://doi.org/10.1111/cxo.12476 |
[20] | Chen, T., Shan, G., Ma, J. and Zhong, Y. (2015) Polymorphism in the RASGRF1 Gene with High Myopia: A Meta-Analysis. Molecular Vision, 21, 1272-1280. |
[21] | Pickrell, J.K., Berisa, T., Liu, J.Z., Ségurel, L., Tung, J.Y. and Hinds, D.A. (2016) Detection and Interpretation of Shared Genetic Influences on 42 Human Traits. Nature Genetics, 48, 709-717. https://doi.org/10.1038/ng.3570 |
[22] | Hawthorne, F., Feng, S., Metlapally, R., Li, Y., Tran-Viet, K., Guggenheim, J.A., et al. (2013) Association Mapping of the High-Grade Myopia MYP3 Locus Reveals Novel Candidates UHRF1BP1L, PTPRR, and PPFIA2. Investigative Opthalmology & Visual Science, 54, 2076-2086. https://doi.org/10.1167/iovs.12-11102 |
[23] | 贾仕玉, 刘勤, 张娜娜, 等. 近视发生发展过程中视网膜色素上皮细胞内分子作用机制的研究进展[J]. 国际眼科杂志, 2023, 23(1): 79-83. |
[24] | 徐洁慧, 高前应, 林智, 等. 多巴胺对兔剥夺性近视眼Bruch膜的影响[J]. 浙江医学, 2008, 30(12): 1289-1290, 1293. |
[25] | Ouyang, X., Han, Y., Xie, Y., Wu, Y., Guo, S., Cheng, M., et al. (2019) The Collagen Metabolism Affects the Scleral Mechanical Properties in the Different Processes of Scleral Remodeling. Biomedicine & Pharmacotherapy, 118, Article ID: 109294. https://doi.org/10.1016/j.biopha.2019.109294 |
[26] | 彭庆生, 高洪莲, 孙瑞婷, 等. 血管内皮生长因子-A165对形觉剥夺性近视豚鼠巩膜重塑的影响[J]. 国际眼科杂志, 2023, 23(9): 1454-1460. |
[27] | Sheikh, M.A., Malik, Y.S., Xing, Z., Guo, Z., Tian, H., Zhu, X., et al. (2017) Polylysine-Modified Polyethylenimine (PEI-PLL) Mediated VEGF Gene Delivery Protects Dopaminergic Neurons in Cell Culture and in Rat Models of Parkinson’s Disease (Pd). Acta Biomaterialia, 54, 58-68. https://doi.org/10.1016/j.actbio.2016.12.048 |
[28] | Li, H.H., Sun, Y.L., Cui, D.M., Wu, J. and Zeng, J.W. (2017) Effect of Dopamine on Bone Morphogenesis Protein-2 Expression in Human Retinal Pigment Epithelium. International Journal of Ophthalmology, 10, 1370-1373. |
[29] | Carr, B.J., Mihara, K., Ramachandran, R., Saifeddine, M., Nathanson, N.M., Stell, W.K., et al. (2018) Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of α2A-Adrenoceptors in Vitro. Investigative Opthalmology & Visual Science, 59, 2778-2791. https://doi.org/10.1167/iovs.17-22562 |
[30] | Stone, R.A., Sugimoto, R., Gill, A.S., Liu, J., Capehart, C. and Lindstrom, J.M. (2001) Effects of Nicotinic Antagonists on Ocular Growth and Experimental Myopia. Investigative Ophthalmology & Visual Science, 42, 557-565. |
[31] | Mao, J., Liu, S. and Fu, C. (2016) Citicoline Retards Myopia Progression Following Form Deprivation in Guinea Pigs. Experimental Biology and Medicine, 241, 1258-1263. https://doi.org/10.1177/1535370216638773 |
[32] | Troilo, D., Smith, E.L., Nickla, D.L., Ashby, R., Tkatchenko, A.V., Ostrin, L.A., et al. (2019) IMI—Report on Experimental Models of Emmetropization and Myopia. Investigative Opthalmology & Visual Science, 60, M31. https://doi.org/10.1167/iovs.18-25967 |