全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群与甲状腺癌的关系
The Relationship between Gut Microbiota and Thyroid Cancer

DOI: 10.12677/acm.2025.151004, PP. 20-25

Keywords: 甲状腺癌,肠道菌群
Thyroid Cancer
, Gut Microbiota

Full-Text   Cite this paper   Add to My Lib

Abstract:

肠道菌群作为人体内一个复杂而庞大的微生物生态系统,近年来已成为医学研究的热点。它们不仅参与食物的消化与吸收,还在维持肠道黏膜屏障、调节免疫功能、抵御外来病原体入侵等方面发挥着至关重要的作用。甲状腺癌是一种常见的内分泌系统恶性肿瘤,近年来在世界范围内的发病率呈逐年上升趋势。其病因复杂,涉及遗传、环境、生活方式等多种因素。尽管手术、放疗、化疗等传统治疗手段在一定程度上提高了甲状腺癌患者的生存率,但仍然存在复发、转移及耐药等问题,对患者的生存质量和预后造成严重影响。
The gut microbiota, as a complex and vast microbial ecosystem in the human body, has become a hot topic in medical research in recent years. They not only participate in the digestion and absorption of food, but also play a crucial role in maintaining the intestinal mucosal barrier, regulating immune function, and resisting the invasion of foreign pathogens. Thyroid cancer is a common malignant tumor of the endocrine system. In recent years, the incidence rate of thyroid cancer in the world has been increasing year by year. Its etiology is complex, involving multiple factors such as genetics, environment, and lifestyle. Although traditional treatment methods such as surgery, radiotherapy, and chemotherapy have improved the survival rate of thyroid cancer patients to some extent, there are still problems such as recurrence, metastasis, and drug resistance, which seriously affect the quality of life and prognosis of patients.

References

[1]  Nosé, V. (2011) Familial Thyroid Cancer: A Review. Modern Pathology, 24, S19-S33.
https://doi.org/10.1038/modpathol.2010.147
[2]  Chen, Z., Xu, W., Huang, Y., Jin, X., Deng, J., Zhu, S., et al. (2013) Associations of Noniodized Salt and Thyroid Nodule among the Chinese Population: A Large Cross-Sectional Study. The American Journal of Clinical Nutrition, 98, 684-692.
https://doi.org/10.3945/ajcn.112.054353
[3]  Refetoff, S., Harrison, J., Karanfilski, B.T., Kaplan, E.L., De Groot, L.J. and Bekerman, C. (1975) Continuing Occurrence of Thyroid Carcinoma after Irradiation to the Neck in Infancy and Childhood. New England Journal of Medicine, 292, 171-175.
https://doi.org/10.1056/nejm197501232920402
[4]  Engeland, A., Tretli, S., Akslen, L.A. and Bjørge, T. (2006) Body Size and Thyroid Cancer in Two Million Norwegian Men and Women. British Journal of Cancer, 95, 366-370.
https://doi.org/10.1038/sj.bjc.6603249
[5]  Barko, P.C., McMichael, M.A., Swanson, K.S. and Williams, D.A. (2017) The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32, 9-25.
https://doi.org/10.1111/jvim.14875
[6]  Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., et al. (2005) Diversity of the Human Intestinal Microbial Flora. Science, 308, 1635-1638.
https://doi.org/10.1126/science.1110591
[7]  Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493.
https://doi.org/10.1007/s00018-018-2943-4
[8]  Kazemian, N., Mahmoudi, M., Halperin, F., Wu, J.C. and Pakpour, S. (2020) Gut Microbiota and Cardiovascular Disease: Opportunities and Challenges. Microbiome, 8, Article No. 36.
https://doi.org/10.1186/s40168-020-00821-0
[9]  Jandhyala, S.M. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803.
https://doi.org/10.3748/wjg.v21.i29.8787
[10]  de Martel, C., Georges, D., Bray, F., Ferlay, J. and Clifford, G.M. (2020) Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. The Lancet Global Health, 8, e180-e190.
https://doi.org/10.1016/s2214-109x(19)30488-7
[11]  Sugizaki, K., Tari, A., Kitadai, Y., Oda, I., Nakamura, S., Yoshino, T., et al. (2018) Anti‐Helicobacter pylori Therapy in Localized Gastric Mucosa‐Associated Lymphoid Tissue Lymphoma: A Prospective, Nationwide, Multicenter Study in Japan. Helicobacter, 23, e12474.
https://doi.org/10.1111/hel.12474
[12]  Bagheri, N., Salimzadeh, L. and Shirzad, H. (2018) The Role of T Helper 1-Cell Response in Helicobacter Pylori-Infection. Microbial Pathogenesis, 123, 1-8.
https://doi.org/10.1016/j.micpath.2018.06.033
[13]  Odenbreit, S., Püls, J., Sedlmaier, B., Gerland, E., Fischer, W. and Haas, R. (2000) Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion. Science, 287, 1497-1500.
https://doi.org/10.1126/science.287.5457.1497
[14]  Hatakeyama, M. (2017) Structure and Function of Helicobacter pylori CagA, the First-Identified Bacterial Protein Involved in Human Cancer. Proceedings of the Japan Academy, Series B, 93, 196-219.
https://doi.org/10.2183/pjab.93.013
[15]  Ruby, T., McLaughlin, L., Gopinath, S. and Monack, D. (2012) Salmonella’s Long-Term Relationship with Its Host. FEMS Microbiology Reviews, 36, 600-615.
https://doi.org/10.1111/j.1574-6976.2012.00332.x
[16]  Illman, S. (2001) Hilbert’s Fifth Problem: Review. Journal of Mathematical Sciences, 105, 1843-1847.
https://doi.org/10.1023/a:1011323915468
[17]  Wu, S., Ye, Z., Liu, X., Zhao, Y., Xia, Y., Steiner, A., et al. (2010) Salmonella typhimurium Infection Increases P53 Acetylation in Intestinal Epithelial Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298, G784-G794.
https://doi.org/10.1152/ajpgi.00526.2009
[18]  Dalmasso, G., Cougnoux, A., Delmas, J., Darfeuille-Michaud, A. and Bonnet, R. (2014) The Bacterial Genotoxin Colibactin Promotes Colon Tumor Growth by Modifying the Tumor Microenvironment. Gut Microbes, 5, 675-680.
https://doi.org/10.4161/19490976.2014.969989
[19]  Nougayrède, J., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., et al. (2006) Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science, 313, 848-851.
https://doi.org/10.1126/science.1127059
[20]  Iftekhar, A., Berger, H., Bouznad, N., Heuberger, J., Boccellato, F., Dobrindt, U., et al. (2021) Genomic Aberrations after Short-Term Exposure to Colibactin-Producing E. coli Transform Primary Colon Epithelial Cells. Nature Communications, 12, Article No. 1003.
https://doi.org/10.1038/s41467-021-21162-y
[21]  Castellarin, M., Warren, R.L., Freeman, J.D., Dreolini, L., Krzywinski, M., Strauss, J., et al. (2011) Fusobacterium nucleatum Infection Is Prevalent in Human Colorectal Carcinoma. Genome Research, 22, 299-306.
https://doi.org/10.1101/gr.126516.111
[22]  Kim, G.W., Kim, Y., Lee, S.H., Park, S.G., Kim, D.H., Cho, J.Y., et al. (2019) Periodontitis Is Associated with an Increased Risk for Proximal Colorectal Neoplasms. Scientific Reports, 9, Article No. 7528.
https://doi.org/10.1038/s41598-019-44014-8
[23]  Bullman, S., Pedamallu, C.S., Sicinska, E., Clancy, T.E., Zhang, X., Cai, D., et al. (2017) Analysis of Fusobacterium Persistence and Antibiotic Response in Colorectal Cancer. Science, 358, 1443-1448.
https://doi.org/10.1126/science.aal5240
[24]  Parhi, L., Alon-Maimon, T., Sol, A., Nejman, D., Shhadeh, A., Fainsod-Levi, T., et al. (2020) Breast Cancer Colonization by Fusobacterium nucleatum Accelerates Tumor Growth and Metastatic Progression. Nature Communications, 11, Article No. 3259.
https://doi.org/10.1038/s41467-020-16967-2
[25]  Zhang, S., Li, C., Liu, J., Geng, F., Shi, X., Li, Q., et al. (2020) Fusobacterium nucleatum Promotes Epithelial‐Mesenchymal Transiton through Regulation of the LncRNA MIR4435‐2HG/miR‐296‐5p/Akt2/SNAI1 Signaling Pathway. The FEBS Journal, 287, 4032-4047.
https://doi.org/10.1111/febs.15233
[26]  Haghi, F., Goli, E., Mirzaei, B. and Zeighami, H. (2019) The Association between Fecal Enterotoxigenic B. fragilis with Colorectal Cancer. BMC Cancer, 19, Article No. 879.
https://doi.org/10.1186/s12885-019-6115-1
[27]  Cheng, W.T., Kantilal, H.K. and Davamani, F. (2020) The Mechanism of Bacteroides Fragilis Toxin Contributes to Colon Cancer Formation. Malaysian Journal of Medical Sciences, 27, 9-21.
https://doi.org/10.21315/mjms2020.27.4.2
[28]  Liu, Q., Li, C., Fu, L., Wang, H., Tan, J., Wang, Y., et al. (2020) Enterotoxigenic Bacteroides fragilis Induces the Stemness in Colorectal Cancer via Upregulating Histone Demethylase JMJD2B. Gut Microbes, 12, Article 1788900.
https://doi.org/10.1080/19490976.2020.1788900
[29]  Bischoff, S.C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J., Serino, M., et al. (2014) Intestinal Permeability—A New Target for Disease Prevention and Therapy. BMC Gastroenterology, 14, Article No. 189.
https://doi.org/10.1186/s12876-014-0189-7
[30]  Camilleri, M. (2019) Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut, 68, 1516-1526.
https://doi.org/10.1136/gutjnl-2019-318427
[31]  Luu, M., Schütz, B., Lauth, M. and Visekruna, A. (2023) The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers, 15, Article 1588.
https://doi.org/10.3390/cancers15051588
[32]  Fenneman, A.C., Bruinstroop, E., Nieuwdorp, M., van der Spek, A.H. and Boelen, A. (2023) A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid, 33, 32-44.
https://doi.org/10.1089/thy.2022.0491
[33]  Zhang, J., Zhang, F., Zhao, C., Xu, Q., Liang, C., Yang, Y., et al. (2018) Dysbiosis of the Gut Microbiome Is Associated with Thyroid Cancer and Thyroid Nodules and Correlated with Clinical Index of Thyroid Function. Endocrine, 64, 564-574.
https://doi.org/10.1007/s12020-018-1831-x
[34]  Feng, J., Zhao, F., Sun, J., Lin, B., Zhao, L., Liu, Y., et al. (2018) Alterations in the Gut Microbiota and Metabolite Profiles of Thyroid Carcinoma Patients. International Journal of Cancer, 144, 2728-2745.
https://doi.org/10.1002/ijc.32007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133