|
发育性癫痫性脑病的精准诊疗研究治疗进展
|
Abstract:
发育性癫痫性脑病(developmental and epilepsy encephalopathies, DEEs)是指起病于发育期,以精神运动发育迟缓或倒退为特征的一组癫痫性脑病综合征。DEEs病因及致病机制复杂,遗传因素占据主导地位。当前,病因驱动治疗已成为制定DEEs管理方案的核心,个别综合征亦有特定的药物适应症。本文综述了目前DEEs的遗传学病因及新型抗癫痫药物在DEEs中的应用前景。旨在优化治疗方案,强调个体化精准诊疗,为提高对这一罕见癫痫疾病的理解和管理提供理论支持。
Developmental and epileptic encephalopathy (DEEs) refers to a group of epileptic encephalopathy syndromes that begin in the developmental period and are characterized by development delay or regression. The etiology and pathogenesis of DEEs are complex, with genetic factors dominating. Currently, etiology-driven treatment has become the core of DEEs management, and certain syndromes also have specific drug indications. This article reviews the current genetic etiology of DEEs and the prospects for applying novel antiepileptic drugs in DEEs. It aims to optimize treatment plans, emphasize individualized and precise diagnosis and treatment, and provide theoretical support for improving understanding and management of this rare epilepsy disease.
[1] | Scheffer, I.E., Berkovic, S., Capovilla, G., Connolly, M.B., French, J., Guilhoto, L., et al. (2017) ILAE Classification of the Epilepsies: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 58, 512-521. https://doi.org/10.1111/epi.13709 |
[2] | Zuberi, S.M., Wirrell, E., Yozawitz, E., Wilmshurst, J.M., Specchio, N., Riney, K., et al. (2022) ILAE Classification and Definition of Epilepsy Syndromes with Onset in Neonates and Infants: Position Statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 63, 1349-1397. https://doi.org/10.1111/epi.17239 |
[3] | Symonds, J.D., Zuberi, S.M., Stewart, K., McLellan, A., O’Regan, M., MacLeod, S., et al. (2019) Incidence and Phenotypes of Childhood-Onset Genetic Epilepsies: A Prospective Population-Based National Cohort. Brain, 142, 2303-2318. https://doi.org/10.1093/brain/awz195 |
[4] | Bayat, A., Bayat, M., Rubboli, G. and Møller, R.S. (2021) Epilepsy Syndromes in the First Year of Life and Usefulness of Genetic Testing for Precision Therapy. Genes, 12, Article No. 1051. https://doi.org/10.3390/genes12071051 |
[5] | Howell, K.B., Eggers, S., Dalziel, K., Riseley, J., Mandelstam, S., Myers, C.T., et al. (2018) A Population-Based Cost-Effectiveness Study of Early Genetic Testing in Severe Epilepsies of Infancy. Epilepsia, 59, 1177-1187. https://doi.org/10.1111/epi.14087 |
[6] | Meisler, M.H., Hill, S.F. and Yu, W. (2021) Sodium Channelopathies in Neurodevelopmental Disorders. Nature Reviews Neuroscience, 22, 152-166. https://doi.org/10.1038/s41583-020-00418-4 |
[7] | Wirrell, E.C., Hood, V., Knupp, K.G., Meskis, M.A., Nabbout, R., Scheffer, I.E., et al. (2022) International Consensus on Diagnosis and Management of Dravet Syndrome. Epilepsia, 63, 1761-1777. https://doi.org/10.1111/epi.17274 |
[8] | Sadleir, L.G., Mountier, E.I., Gill, D., Davis, S., Joshi, C., de Vile, C., et al. (2017) Not All SCN1A Epileptic Encephalopathies Are Dravet Syndrome. Neurology, 89, 1035-1042. https://doi.org/10.1212/wnl.0000000000004331 |
[9] | Maljevic, S. and Lerche, H. (2012) Potassium Channels: A Review of Broadening Therapeutic Possibilities for Neurological Diseases. Journal of Neurology, 260, 2201-2211. https://doi.org/10.1007/s00415-012-6727-8 |
[10] | Pippucci, T., Parmeggiani, A., Palombo, F., Maresca, A., Angius, A., Crisponi, L., et al. (2013) A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy. PLOS ONE, 8, e82154. https://doi.org/10.1371/journal.pone.0082154 |
[11] | Absalom, N.L., Liao, V.W.Y., Johannesen, K.M.H., Gardella, E., Jacobs, J., Lesca, G., et al. (2022) Gain-of-Function and Loss-of-Function GABRB3 Variants Lead to Distinct Clinical Phenotypes in Patients with Developmental and Epileptic Encephalopathies. Nature Communications, 13, Article No. 1822. https://doi.org/10.1038/s41467-022-29280-x |
[12] | Absalom, N.L., Liao, V.W.Y., Kothur, K., Indurthi, D.C., Bennetts, B., Troedson, C., et al. (2020) Gain-of-Function GABRB3 Variants Identified in Vigabatrin-Hypersensitive Epileptic Encephalopathies. Brain Communications, 2, fcaa162. https://doi.org/10.1093/braincomms/fcaa162 |
[13] | Qiao, Y., Li, L., Hu, S., Yang, Y., Ma, Z., Huang, L., et al. (2024) Ketogenic Diet-Produced Β-Hydroxybutyric Acid Accumulates Brain GABA and Increases GABA/Glutamate Ratio to Inhibit Epilepsy. Cell Discovery, 10, Article No. 17. https://doi.org/10.1038/s41421-023-00636-x |
[14] | Nishi, T., Kondo, S., Miyamoto, M., Watanabe, S., Hasegawa, S., Kondo, S., et al. (2020) Soticlestat, a Novel Cholesterol 24-Hydroxylase Inhibitor Shows a Therapeutic Potential for Neural Hyperexcitation in Mice. Scientific Reports, 10, Article No. 17081. https://doi.org/10.1038/s41598-020-74036-6 |
[15] | Hedrich, U.B.S., Lauxmann, S., Wolff, M., Synofzik, M., Bast, T., Binelli, A., et al. (2021) 4-Aminopyridine Is a Promising Treatment Option for Patients with Gain-of-Function KCNA2-Encephalopathy. Science Translational Medicine, 13, eaaz4957. https://doi.org/10.1126/scitranslmed.aaz4957 |
[16] | Rodríguez-Muñoz, M., Cortés-Montero, E., Pozo-Rodrigálvarez, A., Sánchez-Blázquez, P. and Garzón-Niño, J. (2015) The ON: OFF Switch, Σ1r-Hint1 Protein, Controls GPCR-NMDA Receptor Cross-Regulation: Implications in Neurological Disorders. Oncotarget, 6, 35458-35477. https://doi.org/10.18632/oncotarget.6064 |
[17] | Nabbout, R., Mistry, A., Zuberi, S., Villeneuve, N., Gil-Nagel, A., Sanchez-Carpintero, R., et al. (2020) Fenfluramine for Treatment-Resistant Seizures in Patients with Dravet Syndrome Receiving Stiripentol-Inclusive Regimens. Journal of the American Medical Association Neurology, 77, Article No. 300. https://doi.org/10.1001/jamaneurol.2019.4113 |
[18] | Amin, S., Monaghan, M., Aledo-Serrano, A., Bahi-Buisson, N., Chin, R.F., Clarke, A.J., et al. (2022) International Consensus Recommendations for the Assessment and Management of Individuals with CDKL5 Deficiency Disorder. Frontiers in Neurology, 13, Article 874695. https://doi.org/10.3389/fneur.2022.874695 |
[19] | Makridis, K.L., Friedo, A., Kellinghaus, C., Losch, F., Schmitz, B., Boßelmann, C., et al. (2022) Successful Treatment of Adult Dravet Syndrome Patients with Cenobamate. Epilepsia, 63, e164-e171. https://doi.org/10.1111/epi.17427 |
[20] | Dalic, L., Mullen, S.A., Roulet Perez, E. and Scheffer, I. (2014) Lamotrigine Can Be Beneficial in Patients with Dravet Syndrome. Developmental Medicine & Child Neurology, 57, 200-202. https://doi.org/10.1111/dmcn.12593 |
[21] | Falcicchio, G., Lattanzi, S., Negri, F., de Tommaso, M., La Neve, A. and Specchio, N. (2022) Treatment with Cenobamate in Adult Patients with Lennox-Gastaut Syndrome: A Case Series. Journal of Clinical Medicine, 12, Article No. 129. https://doi.org/10.3390/jcm12010129 |
[22] | O’Callaghan, F.J.K., Edwards, S.W., Alber, F.D., Hancock, E., Johnson, A.L., Kennedy, C.R., et al. (2017) Safety and Effectiveness of Hormonal Treatment versus Hormonal Treatment with Vigabatrin for Infantile Spasms (ICISS): A Randomized, Multi-Centre, Open-Label Trial. The Lancet Neurology, 16, 33-42. https://doi.org/10.1016/s1474-4422(16)30294-0 |
[23] | Hancock, E.C., Osborne, J.P. and Edwards, S.W. (2013) Treatment of Infantile Spasms. Cochrane Database of Systematic Reviews, 2014, CD001700. https://doi.org/10.1002/14651858.cd001770.pub3 |
[24] | Westall, C.A., Wright, T., Cortese, F., Kumarappah, A., Snead, O.C. and Buncic, J.R. (2014) Vigabatrin Retinal Toxicity in Children with Infantile Spasms. Neurology, 83, 2262-2268. https://doi.org/10.1212/wnl.0000000000001069 |
[25] | González-Fernández, B., Sánchez, D.I., Crespo, I., San-Miguel, B., de Urbina, J.O., González-Gallego, J., et al. (2018) RETRACTED: Melatonin Attenuates Dysregulation of the Circadian Clock Pathway in Mice with CCL4-Induced Fibrosis and Human Hepatic Stellate Cells. Frontiers in Pharmacology, 9, Article No. 556. https://doi.org/10.3389/fphar.2018.00556 |
[26] | Khan, S., Khurana, M., Vyas, P., et al. (2020) The Role of Melatonin and Its Analogues in Epilepsy. Reviews in the Neurosciences. https://pubmed.ncbi.nlm.nih.gov/32950966/ |
[27] | Bazil, C.W., Short, D., Crispin, D. and Zheng, W. (2000) Patients with Intractable Epilepsy Have Low Melatonin, Which Increases Following Seizures. Neurology, 55, 1746-1748. https://doi.org/10.1212/wnl.55.11.1746 |
[28] | Mercau, M.E., Calanni, J.S., Aranda, M.L., Caldareri, L.J., Rosenstein, R.E., Repetto, E.M., et al. (2019) Melatonin Prevents Early Pituitary Dysfunction Induced by Sucrose-Rich Diets. Journal of Pineal Research, 66, e12545. https://doi.org/10.1111/jpi.12545 |
[29] | Wan, L., Shi, X., Ge, W., Sun, Y., Zhang, S., Wang, J., et al. (2020) The Instigation of the Associations between Melatonin, Circadian Genes, and Epileptic Spasms in Infant Rats. Frontiers in Neurology, 11, Article 497225. https://doi.org/10.3389/fneur.2020.497225 |
[30] | Sun, Y., Chen, J., Shi, X., Li, Z., Wan, L., Yan, H., et al. (2023) Safety and Efficacy of Melatonin Supplementation as an Add-On Treatment for Infantile Epileptic Spasms Syndrome: A Randomized, Placebo-Controlled, Double-Blind Trial. Journal of Pineal Research, 76, e12922. https://doi.org/10.1111/jpi.12922 |
[31] | Jain, S.V., Horn, P.S., Simakajornboon, N., Beebe, D.W., Holland, K., Byars, A.W., et al. (2015) Melatonin Improves Sleep in Children with Epilepsy: A Randomized, Double-Blind, Crossover Study. Sleep Medicine, 16, 637-644. https://doi.org/10.1016/j.sleep.2015.01.005 |
[32] | Coppola, G., Iervolino, G., Mastrosimone, M., La Torre, G., Ruiu, F. and Pascotto, A. (2004) Melatonin in Wake-Sleep Disorders in Children, Adolescents and Young Adults with Mental Retardation with or without Epilepsy: A Double-Blind, Cross-Over, Placebo-Controlled Trial. Brain and Development, 26, 373-376. https://doi.org/10.1016/j.braindev.2003.09.008 |
[33] | Vossler, D.G., Bainbridge, J.L., Boggs, J.G., Novotny, E.J., Loddenkemper, T., Faught, E., et al. (2020) Treatment of Refractory Convulsive Status Epilepticus: A Comprehensive Review by the American Epilepsy Society Treatments Committee. Epilepsy Currents, 20, 245-264. https://doi.org/10.1177/1535759720928269 |
[34] | Niday, Z. and Tzingounis, A.V. (2018) Potassium Channel Gain of Function in Epilepsy: An Unresolved Paradox. The Neuroscientist, 24, 368-380. https://doi.org/10.1177/1073858418763752 |